

10 Almsford Road

Harrogate

North Yorkshire

HG2 8EQ

Tel: 07749 838310

NYMNPA 13/12/2023

Email: tim@hdesignsltd.co.uk

DESIGN CALCULATIONS

FOR

THORPE HALL, FYLINGTHORPE

PV Roof Assessment

Client:	Wigwam Ltd				
Date:	28/11/2023	Prepared by:	Timothy Hunt	Job Ref:	23/0510

H DESIGNS LTD	Scheme Thorpe Hall, Fylingthorpe	Job Ref. 23/0510
10 Almsford Road Harrogate North Yorkshire HG2 8EQ	Job PV Roof Assessment	Sheet no./rev. 1
Tel: 07749 838310 Email: tim@hdesignsltd.co.uk	Cale. by Timothy Hunt	Date 28/11/2023

CONTENTS

Design Risk Assessment Page No. 2 – 4	
Calculations Page No. 5 – 13	
Drawing No. – Not Applicable	

H DESIGNS LTD	Scheme Thorpe Hall, Fylingthorpe	Job Ref. 23/0510
10 Almsford Road Harrogate North Yorkshire HG2 8EQ	Job PV Roof Assessment	Sheet no./rev. 2
Tel: 07749 838310 Email: tim@hdesignsltd.co.uk	Calc. by Timothy Hunt	Date 28/11/2023

Duration of Risk	Description	ID Letter	Source of Hazard	ID Number	Persons at Risk
Design.	Risk is present during design	А	Chemicals / C.O.S.H.H	1	Site Worker
	phase of scheme	В	Collision / Impact		
		С	Competence	2	Site Visitor
Const.	Risk is present during	D	Components and Materials		
	construction phase of scheme	Е	Confined Space	3	General Public
		F	Electricity		
Maint.	Risk is present during	G	Environmental Conditions		
	maintenance of scheme	Н	Erection		
		J	Falls from Height		
Demol.	Risk is present during	K	Foundations		
	demolition of scheme	L	General Use		
		М	Heat / Fire / Explosions		
		Ν	Manual Handling		
		0	Misuse / Vandalism		
		Р	Noise		
		Q	Obstruction		
		R	Other		
		S	Rotation / Overturning		
		Т	Traffic (Rail/Road)		
		U	Use of Plant / Machinery		
		V	Vibration		
		W	Welfare / First Aid		

H DESIGNS LTD	Scheme Thorpe Hall, Fylingthorpe	Job Ref. 23/0510
10 Almsford Road Harrogate North Yorkshire HG2 8EQ	Job PV Roof Assessment	Sheet no./rev. 3
Tel: 07749 838310 Email: tim@hdesignsltd.co.uk	Calc. by Timothy Hunt	Date 28/11/2023

Duration	Туре	Hazard	Person at Risk	Residual Hazard Eliminated/Reduced by (Design)	Residual Hazard Control Measures On Site
Design /Const.	A	Site Conditions Unknown materials on site	1, 2	Site to be surveyed before commencement of work to identify hazards that can be seen.	Excavations are to be supervised to ensure that no hazards/services are disturbed.
Design	С	Workers undertaking tasks they are not trained to carry out	1, 2, 3	All site personnel are to carry industry recognised cards showing their skills. Site personnel to read method statements/work measurements before commencing work and sign off their competency.	Industry recognised training to be undertaken and all works to be undertaken by trained personnel.
Design	D,F	Site has not been surveyed before design for services	1	-	Site to be surveyed for services which are to be marked on site and on a drawing before work commences. Where on site markings are lost these are to be replaced.
Const.	W	Cuts from sharp objects	1, 2	-	Good housekeeping maintained on sit PPE to be worn at all times First aid kit accessible at all times Suitable number of workers to be trained in first aid
Const.	W	Slips and trips	1, 2	-	Good housekeeping maintained on sit Clearly designated walkways Avoid change of levels/ use ramps Reduce slippery surfaces using grit (for ice) or stones (for mud) PPE to be worn at all times First aid kit accessible at all times Suitable number of workers to be trained in first aid
Const.	Т	Injury caused by moving vehicles on site	1, 2	-	Clear routes identified for site vehicle High visibility jackets to be worn at a times Provide parking for workforce and visitors away from working area
Const.	Р	Noise	1, 2, 3	-	Assess construction techniques for excessive noise and reduce where possible Ear defenders should be worn by thos exposed to excessive noise
Const.	М	Fire/explosion	1, 2, 3	-	Good housekeeping maintained on sit Fire extinguishers available

H <u>DESIGNS LTD</u>	Scheme Thorpe Hall, Fylingthorpe	Job Ref. 23/0510
10 Almsford Road Harrogate North Yorkshire HG2 8EQ	Job PV Roof Assessment	Sheet no./rev.
Tel: 07749 838310 Email: tim@hdesignsltd.co.uk	Cale. by Timothy Hunt	Date 28/11/2023

Const.	0	Site vandalism	1, 2, 3	-	Secure site boundary
					Use appropriate signage

Beams/Roof/Masonry

Duration	Туре	Hazard	Person at	Residual Hazard	Residual Hazard Control Measures On
Const	T	Falls from baight	Kisk	Eliminated/Reduced by (Design)	Site
Const.	J	Fails from height	1, 2	-	Use lifting platforms where possible Ladders to be in good condition secured correctly Correct scaffolding to be provided and inspected Trained personnel only to use scaffold
Const.	w	Injury from falling objects	1, 2	-	Works to be programmed to keep safe zones clear beneath workers overhead PPE to be worn at all time Waste materials removed
Const.	N	Manual handling of masonry	1	All blocks specified less than 20kg therefore no special lifting arrangements required	Provisions to be made for mechanical lifting where masonry loads are over 20kg
Const.	N	Manual handling of beams/lintels	1	Heavy beams/lintels avoided where possible	Provisions to be made for mechanical lifting where required for large beams & columns
Const.	D	Contact with mortar	1	-	Gloves to be worn when handling mortar Washing facilities to be provided
Const.	W	Tripping/injury arising from opening up works	1, 2	-	Cover opening up works Use appropriate signage/barriers
Const.	R	Instability of structure during modifications	1, 2	All information/drawings provided used to assess existing load paths and supports	Use suitable temporary support Carry out structural survey if required
Demol.	R	Instability of structure during demolition	1, 2	Provide as built information as requested	Carry out structural survey if required Method statement for demolition prepared

H DESIGNS LTD	Scheme Thorpe Hall, Fylingthorpe	Job Ref. 23/0510
10 Almsford Road Harrogate North Yorkshire HG2 8EQ	Job PV Roof Assessment	Sheet no./rev. 5
Tel: 07749 838310 Email: tim@hdesignsltd.co.uk	Calc. by Timothy Hunt	Date 28/11/2023

These calculations are to check the capacity of the existing roof to support the new PV panels installed onto the roof. The existing house is constructed from masonry and timber trusses.

GENERAL LOADINGS

ROOF LOADING (PITCHED TILED ROOF)

Roof slope $\theta = 42.0$ °	
Dead load	
Tiles	$Roof_{D1} = 0.45 \text{ kN/m}^2$
Battens	$Roof_{D2} = 0.05 \text{ kN/m}^2$
Felt	$Roof_{D3} = 0.05 \text{ kN/m}^2$
Rafters	$Roof_{D4} = 0.10 \text{ kN/m}^2$
Dead load on slope	$Roof_{DL_{sroof}} = sum(Roof_{D1}, Roof_{D2}, Roof_{D3}, Roof_{D4}) = 0.65 \text{ kN/m}^2$
Ceiling joists	$Roof_{D5} = 0.05 \text{ kN/m}^2$
Insulation	$Roof_{D6} = 0.05 \text{ kN/m}^2$
Plasterboard and skim	$Roof_{D7} = 0.14 \text{ kN/m}^2$
Services	$Roof_{D8} = 0.05 \text{ kN/m}^2$
Dead load on plan	$Roof_{DL_proof} = sum(Roof_{D5}, Roof_{D6}, Roof_{D7}, Roof_{D8}) = 0.29 \text{ kN/m}^2$
Total dead load on plan	$Roof_{DL} = Roof_{DL_sroof} / cos(\theta) + Roof_{DL_proof} = 1.16 \text{ kN/m}^2$
Imposed load	
Roof imposed load	$Roof_{IL} = 0.75 \text{ kN/m}^2$ on plan
Total roof loads	
Unfactored foundation design loads	$w_{roof_u} = Roof_{DL} + Roof_{IL} = 1.91 \text{ kN/m}^2$
Factored design loads	$w_{roof_f} = 1.4 \times Roof_{DL} + 1.6 \times Roof_{IL} = \textbf{2.83} \text{ kN/m}^2$

SOLAR PANEL LOADING Dead load

<u> </u>	
Total load of new Panel	$W_{Pan_DL} = 21.8 \text{ kg} \times g_{acc} \times 4 = \textbf{0.86} \text{ kN}$
Area of new panels A _P	$a_{an} = 1.762 \text{m} \times 1.134 \text{m} \times 4 = 7.99 \text{ m}^2$
Solar panel dead load	$Panel_{DL} = W_{Pan_{DL}} / A_{Pan} = 0.11 \text{ kN/m}^2$
Framework for panels (generally	Frame _{DL} = $4.0 \text{ kg/m}^2 \times g_{acc} = 0.04 \text{ kN/m}^2$
<u>Total panel loads</u>	
Unfactored foundation design loads	$w_{panel_u} = Panel_{DL} + Frame_{DL} = 0.15 \text{ kN/m}^2$
Factored design loads	$w_{panel_f} = 1.4 \times (Panel_{DL} + Frame_{DL}) = 0.20 \text{ kN/m}^2$

SNOW LOADING TO BS6399:PART 3:1988

Site location			
Location of site	York		
Site altitude	A = 95 m		
Calculate site snow load			
From BS6399:Part 3: 1988 - Figure 1. Basic snow load on the ground			
Basic snow load	$s_b = 0.60 \ kN/m^2$		
	$s_{alt} = 0.1 \times s_b + (0.09 \ kN/m^2) = \textbf{0.15} \ kN/m^2$		

TEDDS calculation version 1.0.03

H DESIGNS LTD	Scheme Thorpe Hall, Fylingthorpe	Job Ref. 23/0510
10 Almsford Road Harrogate North Yorkshire HG2 8EQ	Job PV Roof Assessment	Sheet no./rev.
Tel: 07749 838310 Email: tim@hdesignsltd.co.uk	Calc. by Timothy Hunt	Date 28/11/2023
Site snow load	$s_0 = max(s_b, s_b + s_{alt} \times (A - (100 m)) / 100$	m) = 0.60 kN/m ² BS6399:Part3:1988 Cl.6.2
	$\frac{\alpha}{\mu}$	µ₁ ∓
Uniform	loading Asymmetric lo	ading
Roof geometry Roof type Distance on plan from gutter to rid Angle of pitch of roof Calculate uniform snow load From BS6399:Part 3: 1988 - F Snow load shape coefficient Uniform roof snow load Calculate asymmetric snow load From BS6399:Part 3: 1988 - F Snow load shape coefficient Asymmetric roof snow load Snow sliding down roof Maximum uniform snow load on r Force from sliding snow load	$\begin{array}{llllllllllllllllllllllllllllllllllll$	9.48 BS6399:Part3:1988 Cl.5 9.72 BS6399:Part3:1988 Cl.5 BS6399:Part3:1988 Cl.8
From Roof $W_{Roof_u} = w_{roof_u} =$ From Snow $W_{Roof_SL} = s_{d_max} =$ From Panels $W_{Panel_u} = w_{panel_u} =$	1.91 kN/m ² 0.43 kN/m ² 0.15 kN/m ²	
LOAD ASSESSMENT		
Percentage increase in loading on trusse	es $P = W_{Panel_u} / (W_{Roof_u} + W_{Roof_{SL}}) = 6.23 \%$	
The LABC guidance note for retrofittin on the roof is increased by more than 15	g solar panels recommends that they are only classed as a materia 5%. As this is not the case further design checks are not required.	alteration to a building if the load

H DESIGNS LTD	Scheme Thorpe Hall, Fylingthorpe	Job Ref. 23/0510
10 Almsford Road Harrogate North Yorkshire HG2 8EQ Tel: 07749 838310 Email: tim@hdesignsltd.co.uk	Job PV Roof Assessment	Sheet no./rev. 7
	Calc. by Timothy Hunt	Date 28/11/2023

SECONDARY CHECK - TIMBER RAFTER DESIGN (BS5268)

TIMBER RAFTER DESIGN (BS5268-2:2002)

Radius of gyration

Dead load on slope

Loading details Rafter self weight TEDDS calculation version 1.0.03

 $F_{j} = b \times h \times \rho_{char} \times g_{acc} = \textbf{0.01} \ kN\!/m$

 $F_d=\textbf{0.80}\ kN/m^2$

H DESIGNS LTD	Scheme	Thorpe Hall, Fylingthorpe	Job Ref. 23/0510	
10 Almsford Road	Job		Sheet no./rev.	
Harrogate		PV Roof Assessment	8	
North Yorkshire				
Tel: 07749 838310	Calc. by		Date	
Email: tim@hdesignsltd.co.uk	5	Timothy Hunt	28/11/2023	
		· · · · · · · · · · · · · · · · · · ·		
Imposed load on plan		$F_u = 0.75 \text{ kN/m}^2$		
Imposed point load		F _p = 0.90 kN		
Modification factors				
Section depth factor		$K_7 = (300 \text{ mm} / \text{h})^{0.11} = 1.16$		
Load sharing factor		$K_8 = 1.10$		
		•		
Consider long term load condition	<u>1</u>	V 400		
Load duration factor		$K_3 = 1.00$	1	
I otal UDL perpendicular to rafter		$F = F_d \cos(\alpha) s + F_j \cos(\alpha) = 0.216 \text{ kN}$	//m	
Notional bearing length		$L_{b} = F \times L_{cl} / [2 \times (b \times \sigma_{cp1} \times K_{8} - F)] = 2 mm$		
Effective span		$L_{eff} = L_{cl} + L_b = 1704 \text{ mm}$		
Check bending stress at purlin				
Bending stress parallel to grain		$\sigma_m =$ 5.300 N/mm ²		
Permissible bending stress		$\sigma_{m_adm} = \sigma_m \times K_3 \times K_7 \times K_8 = \textbf{6.790} \ N/mm^2$		
Applied bending stress		$\sigma_{m_{max}} = F L_{eff}^2 / (8 Z) = 1.779 \text{ N/mm}^2$		
	PASS - Applied bending stress within permissible limits			
Check compressive stress parallel	to grain at purlin			
Compression stress parallel to grain $\sigma_c = 6.800 \text{ N/mm}^2$				
Minimum modulus of elasticity		$E_{min} = 5800 \text{ N/mm}^2$		
Compression member factor		$K_{12} = 0.52$		
Permissible compressive stress		$\sigma_{c_adm} = \sigma_c \times K_3 \times K_8 \times K_{12} = \textbf{3.889} \text{ N/mm}^2$		
Applied compressive stress	Applied compressive stress		$\sigma_{c_max} = 3 F L_{eff} (\cot(\alpha) + 8 \tan(\alpha) / 3) / (8 A) = 0.138 \text{ N/mm}^2$	
PASS - Applied compressive stress within permissible li.		stress within permissible limits		
Check combined bending and con	npressive stress par	allel to grain at purlin		
Euler stress		$\sigma_{\rm e} = \pi^2 \times E_{\rm min} / \lambda^2 = 9.243 \text{ N/mm}^2$		
Euler coefficient		$K_{eu} = 1 - (1.5 \times \sigma_c \max \times K_{12} / \sigma_e) = 0.988$		
Combined axial compression and be	ending check	$\sigma_{\rm m} \max / (\sigma_{\rm m} adm \times K_{\rm ell}) + \sigma_{\rm c} \max / \sigma_{\rm c} adm = 0.300$	< 1	
1	e P	ASS - Combined compressive and bending stresse	s are within permissible limits	
Check bending stress in lower po	rtion of rafter		•	
Bending stress parallel to grain	tion of farter	$\sigma_{\rm m} = 5300{\rm N/mm^2}$		
Permissible bending stress		$\sigma_{\rm m} = \sigma_{\rm m} \times K_{\rm a} \times K_{\rm a} \times K_{\rm a} = 6.790 {\rm N/mm^2}$		
Applied bending stress		$\sigma_{m_{adm}} = \sigma_{m_{adm}} + K_{3} \times K_{7} \times K_{8} = 0.730 \text{ eV}$	m^2	
Applied beliening success	Apprice bending stress $\sigma_{m_max} = 9$ r $L_{eff'} (128 \ Z) = 1.001 \ N/mm^2$		uuu stuass within nanmissihla limits	
rASS - Applied behaing stress within permissible limits				
Check compressive stress parallel to grain in lower portion of rafter				
Compression stress parallel to grain	Compression stress parallel to grain $\sigma_c = 6.800 \text{ N/mm}^2$			
Minimum modulus of elasticity		$E_{min} = 5800 \text{ N/mm}^2$		
Compression member factor		$K_{12} = 0.52$		
Permissible compressive stress		$\sigma_{c_adm} = \sigma_c \times K_3 \times K_8 \times K_{12} = 3.889 \text{ N/mm}^2$		
Applied compressive stress		$\sigma_{c_{max}} = 3$ F L_{eff} $(\cot(\alpha) + 13 \tan(\alpha))$	$(3)/(8 = 0.196 \text{ N/mm}^2)$	
PASS - Applied compressive stress within permissible limits				
Check combined bending and compressive stress parallel to grain in lower portion of rafter				
Euler stress		$\sigma_e = \pi^2 \times E_{min} / \lambda^2 = 9.243 \text{ N/mm}^2$		

H DESIGNS LTD	Scheme	Thorpe Hall, Fylingthorpe	Job Ref. 23/0510
10 Almsford Road	Job		Sheet no./rev.
Harrogate		PV Roof Assessment	9
North Yorkshire			
HG2 8EQ Tel: 07749 838310	Cala hy		Data
Email: tim@hdesignsltd.co.uk	Calc. by	Timothy Hunt	28/11/2023
		Thilothy Hult	20/11/2025
Euler coefficient		$K_{\rm m} = 1 - (1.5 \times \sigma_{\rm m} - m \times K_{12} / \sigma_{\rm m}) = 0.983$	
Combined avial compression and be	anding check	$\pi_{eu} = 1 (1.5 \times 6e_{max} \times R_{12}) 6e_{0} = 0.000$	< 1
Combined axial compression and bending check $G_{m_max} / (G_{m_adm} \times K_{eu}) + G_{c_max} / G_{c_adm} - 0.200 < 1$			s are within permissible limits
Chaoly shoon strong			
Shear stress parallel to grain		$\tau = 0.670 \text{ N/mm}^2$	
Permissible shear stress		$\tau_{\rm rel} = \tau_{\rm rel} K_{\rm 2} \times K_{\rm 2} = 0.737 \rm N/mm^2$	
Applied shear stress		$\tau = 15$ E L $\infty/(16$ A) = 0.008 N/mm	.2
Applied shear stress		$t_{\text{max}} = 15$ F Leff / (10 A) = 0.030 N/IIII	l Maria anistica a anni anit la limita
		PASS - Appuea snear S	stress within permissible umits
Check deflection			
Permissible deflection		$\delta_{adm} = 0.003 \times L_{eff} = \textbf{5.112} \text{ mm}$	
Bending deflection		$\delta_b = F - L_{eff}^4 / (185 - E_{mean} - I) = 0.677 \text{ mm}$	
Shear deflection		$\delta_s = 12$ F $L_{eff}^2 / (5 E_{mean} A) = 0.049$	mm
Total deflection	Total deflection $\delta_{max} = \delta_b + \delta_s = 0.725 \text{ mm}$		
		PASS - Total defle	ction within permissible limits
Consider medium term load cond	<u>ition</u>		
Load duration factor	Load duration factor		
Total UDL perpendicular to rafter		$F = [F_u \cos(\alpha)^2 + F_d \cos(\alpha)] s + F_j c$	os(α) = 0.361 kN/m
Notional bearing length		$L_b = F \times L_{cl} / [2 \times (b \times \sigma_{cp1} \times K_8 - F)] = 3 \text{ mm}$	
Effective span		$L_{eff} = L_{cl} + L_b = \textbf{1705} mm$	
Check bending stress at purlin			
Bending stress parallel to grain		$\sigma_m =$ 5.300 N/mm ²	
Permissible bending stress		$\sigma_{m adm} = \sigma_{m} \times K_{3} \times K_{7} \times K_{8} = 8.488 \text{ N/mm}^{2}$	
Applied bending stress		$\sigma_{m max} = F (L_{eff}^2 / (8 Z) = 2.977 N/mm^2)$	
		PASS - Applied bending	stress within permissible limits
Check compressive stress parallel	to grain at purlin		-
Compression stress parallel to grain	o gran av parin	$\sigma_{c} = 6.800 \text{ N/mm}^{2}$	
Minimum modulus of elasticity		$E_{min} = 5800 \text{ N/mm}^2$	
Compression member factor		K ₁₂ = 0.47	
Permissible compressive stress		$\sigma_{c adm} = \sigma_{c} \times K_{3} \times K_{8} \times K_{12} = 4.400 \text{ N/mm}^{2}$	
Applied compressive stress		$\sigma_{c \max} = 3$ F L_{eff} $(\cot(\alpha) + 8 \tan(\alpha) / 2)$	3) / (8 \dot{A}) = 0.230 N/mm ²
		PASS - Applied compressive s	stress within permissible limits
Check combined bending and con	nressive stress nar	allel to grain at nurlin	•
Fuler stress	ipressive seress para	$\sigma_{2} = \pi^{2} \times F_{min} / \lambda^{2} = 9.231 \text{ N/mm}^{2}$	
Euler coefficient	Euler success $G_e = \pi \times E_{min} / \Lambda^2 = 7.231$ [Willing] Euler sacefficient $V_e = 1 - (1.5 + 2 - 4.5) = 0.002$		
Combined avial compression and be	$\mathbf{K}_{eu} = \mathbf{I} - (\mathbf{I} \cdot \mathbf{J} \times \mathbf{O} \cdot \mathbf{C}_{max} \times \mathbf{K}_{12} / \mathbf{O} \cdot \mathbf{O} - \mathbf{U} \cdot \mathbf{O} \cdot \mathbf{O}$		< 1
	PA	ISS - Combined compressive and bending stresse	s are within permissible limits
Check bending stress in lower no	tion of rafter	1 8	Ĩ
Bending stress parallel to grain		$\sigma_{\rm m} = 5.300 \ {\rm N/mm^2}$	
Permissible bending stress		$\sigma_{\rm m} adm = \sigma_{\rm m} \times K_3 \times K_7 \times K_8 = 8.488 \text{ N/mm}^2$	
Applied bending stress		$\sigma_{\rm m} = 9$ F $L_{\rm eff}^2 / (128 \ 7) = 1.675 {\rm N/m}$	nm ²
reprise soluting succes		PASS - Annlied heading	stress within nermissihle limits
		1 Abb - Appueu venuing	n cos munun permissiore umus

H DESIGNS LTD	Scheme	Thorpe Hall, Fylingthorpe	Job Ref. 23/0510	
10 Almsford Road Harrogate North Yorkshire HG2 8EQ	Јов	PV Roof Assessment	Sheet no./rev. 10	
Tel: 07749 838310 Email: tim@hdesignsltd.co.uk	Calc. by	Timothy Hunt	Date 28/11/2023	
Check compressive stress parallel	to grain in lower	portion of rafter		
Compression stress parallel to grain	L	$\sigma_c = \textbf{6.800} \ N/mm^2$		
Minimum modulus of elasticity		$E_{min} = \textbf{5800} \ N/mm^2$		
Compression member factor		$K_{12} = 0.47$		
Permissible compressive stress		$\sigma_{c_adm} = \sigma_c \times K_3 \times K_8 \times K_{12} = \textbf{4.400} \ N/mm^2$		
Applied compressive stress		$\sigma_{c_{max}} = 3$ F L_{eff} $(\cot(\alpha) + 13$ $\tan(\alpha)$	$\sigma_{c_{max}} = 3 F L_{eff} (\cot(\alpha) + 13 \tan(\alpha) / 3) / (8 A) = 0.328 \text{ N/mm}^2$	
		PASS - Applied compressive s	stress within permissible limits	
Check combined bending and con	npressive stress p	arallel to grain in lower portion of rafter		
Euler stress		$\sigma_e = \pi^2 \times E_{min} / \lambda^2 = \textbf{9.231} \text{ N/mm}^2$		
Euler coefficient		$K_{eu} = 1 - (1.5 \times \sigma_{c_max} \times K_{12} / \sigma_e) = 0.975$		
Combined axial compression and be	ending check	$\sigma_{m_max} / (\sigma_{m_adm} \times K_{eu}) + \sigma_{c_max} / \sigma_{c_adm} = 0.277$	< 1	
		PASS - Combined compressive and bending stresse	es are within permissible limits	
Check shear stress				
Shear stress parallel to grain		$\tau = 0.670 \text{ N/mm}^2$		
Permissible shear stress	$\tau_{adm} = \tau \times K_3 \times K_8 = 0.921 \text{ N/mm}^2$			
Applied shear stress	$\tau_{max} = 15$ F $L_{eff}/(16$ A) = 0.164 N/mm ²		1 ²	
	PASS - Applied shear stress within permissible limit			
Check deflection			F	
Permissible deflection		$\delta_{1} = 0.003 \times L_{c} = 5.115 \text{ mm}$		
Bending deflection		$\delta_{adm} = 0.005 \times Lerr = 0.113 \text{ mm}$ $\delta_{b} = \text{E} \left[1 \text{ s}^{4} / (185 \text{ F} \text{ D}) = 1.134 \text{ mm} \right]$		
Shorr deflection	$\delta_b = F - L_{eff}^{-\tau} / (185 - E_{mean} - I) = 1.734 \text{ mm}$			
		$O_{S} = 12$ F Leff / (5 Emean A) = 0.001	11111	
I otal deflection		$o_{max} = o_b + o_s = 1.215 \text{ mm}$	otion within nonwissible limits	
		rASS - 10101 uejte	cuon wunin permissible umus	
Consider short term load condition	<u>)n</u>			
Load duration factor		K ₃ = 1.50		
Load duration factor Total UDL perpendicular to rafter		$K_3 = 1.50$ $F = F_d \ cos(\alpha) \ s + F_j \ cos(\alpha) = 0.216 \text{ kN}$	ī/m	
Load duration factor Total UDL perpendicular to rafter Notional bearing length		$\begin{split} &K_3 = \textbf{1.50} \\ &F = F_d \cos(\alpha) s + F_j \cos(\alpha) = \textbf{0.216 kN} \\ &L_b = \left[F \times L_{cl} + F_p \times \cos(\alpha)\right] / \left[2 \times (b \times \sigma_{cp1} \times K_8)\right] \end{split}$	[/m - F)] = 5 mm	
Load duration factor Total UDL perpendicular to rafter Notional bearing length Effective span		$\begin{split} &K_{3} = \textbf{1.50} \\ &F = F_{d} \cos(\alpha) s + F_{j} \cos(\alpha) = \textbf{0.216} \text{ kN} \\ &L_{b} = [F \times L_{cl} + F_{p} \times \cos(\alpha)] / \left[2 \times (b \times \sigma_{cpl} \times K_{8} \\ &L_{eff} = L_{cl} + L_{b} = \textbf{1707} \text{ mm} \end{split}$	I/m - F)] = 5 mm	
Load duration factor Total UDL perpendicular to rafter Notional bearing length Effective span Check bending stress at purlin		$\begin{split} K_3 &= \textbf{1.50} \\ F &= F_d \cos(\alpha) s + F_j \cos(\alpha) = \textbf{0.216 kN} \\ L_b &= \left[F \times L_{cl} + F_p \times \cos(\alpha)\right] / \left[2 \times (b \times \sigma_{cp1} \times K_8) \right] \\ L_{eff} &= L_{cl} + L_b = \textbf{1707 mm} \end{split}$	I/m - F)] = 5 mm	
Load duration factor Total UDL perpendicular to rafter Notional bearing length Effective span Check bending stress at purlin Bending stress parallel to grain		$\begin{split} &K_{3} = \textbf{1.50} \\ &F = F_{d} \cos(\alpha) s + F_{j} \cos(\alpha) = \textbf{0.216 kN} \\ &L_{b} = [F \times L_{cl} + F_{p} \times \cos(\alpha)] / [2 \times (b \times \sigma_{cp1} \times K_{8} \\ &L_{eff} = L_{cl} + L_{b} = \textbf{1707 mm} \\ &\sigma_{m} = \textbf{5.300 N/mm}^{2} \end{split}$	//m - F)] = 5 mm	
Load duration factor Total UDL perpendicular to rafter Notional bearing length Effective span Check bending stress at purlin Bending stress parallel to grain Permissible bending stress		$\begin{split} &K_{3} = \textbf{1.50} \\ &F = F_{d} \cos(\alpha) s + F_{j} \cos(\alpha) = \textbf{0.216 kN} \\ &L_{b} = [F \times L_{cl} + F_{p} \times \cos(\alpha)] / [2 \times (b \times \sigma_{cp1} \times K_{8} \\ L_{eff} = L_{cl} + L_{b} = \textbf{1707 mm} \\ &\sigma_{m} = \textbf{5.300 N/mm}^{2} \\ &\sigma_{m_adm} = \sigma_{m} \times K_{3} \times K_{7} \times K_{8} = \textbf{10.186 N/mm}^{2} \end{split}$	[/m - F)] = 5 mm	
Load duration factor Total UDL perpendicular to rafter Notional bearing length Effective span Check bending stress at purlin Bending stress parallel to grain Permissible bending stress Applied bending stress		$\begin{split} &K_{3} = \textbf{1.50} \\ &F = F_{d} \cos(\alpha) s + F_{j} \cos(\alpha) = \textbf{0.216 kN} \\ &L_{b} = [F \times L_{cl} + F_{p} \times \cos(\alpha)] / [2 \times (b \times \sigma_{cp1} \times K_{8} \\ L_{eff} = L_{cl} + L_{b} = \textbf{1707 mm} \\ &\sigma_{m} = \textbf{5.300 N/mm}^{2} \\ &\sigma_{m_adm} = \sigma_{m} \times K_{3} \times K_{7} \times K_{8} = \textbf{10.186 N/mm}^{2} \\ &\sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} \cos(\alpha) L_{eff} / C_{b} \\ &\sigma_{m} = \sigma_{m} \times K_{a} \times K_{b} + \delta_{a} + \delta_{b} \\ &\sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} \cos(\alpha) L_{eff} / C_{b} \\ &\sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} \cos(\alpha) L_{eff} / C_{b} \\ &\sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} \cos(\alpha) L_{eff} / C_{b} \\ &\sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} C_{b} \\ &\sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} C_{b} \\ &\sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} C_{b} \\ &\sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} C_{b} \\ &\sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} C_{b} \\ &\sigma_{m_max} = F C_{b} \\ &\sigma$	[/m - F)] = 5 mm (32 ´ Z) = 4.214 N/mm ²	
Load duration factor Total UDL perpendicular to rafter Notional bearing length Effective span Check bending stress at purlin Bending stress parallel to grain Permissible bending stress Applied bending stress		$\begin{split} & K_{3} = \textbf{1.50} \\ & F = F_{d} \cos(\alpha) s + F_{j} \cos(\alpha) = \textbf{0.216 kN} \\ & L_{b} = [F \times L_{cl} + F_{p} \times \cos(\alpha)] / [2 \times (b \times \sigma_{cp1} \times K_{8} \\ L_{eff} = L_{cl} + L_{b} = \textbf{1707 mm} \\ & \sigma_{m} = \textbf{5.300 N/mm^{2}} \\ & \sigma_{m_adm} = \sigma_{m} \times K_{3} \times K_{7} \times K_{8} = \textbf{10.186 N/mm^{2}} \\ & \sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} \cos(\alpha) L_{eff} / C_{pASS} - Applied bending = S \\ & F_{abs} = 1000 \text{ M} M$	[/m - F)] = 5 mm $(32 \ Z) = 4.214 N/mm^2$ stress within permissible limits	
Load duration factor Total UDL perpendicular to rafter Notional bearing length Effective span Check bending stress at purlin Bending stress parallel to grain Permissible bending stress Applied bending stress Check compressive stress parallel	to grain at purlin	$\begin{split} & K_{3} = \textbf{1.50} \\ & F = F_{d} \cos(\alpha) s + F_{j} \cos(\alpha) = \textbf{0.216} \text{ kN} \\ & L_{b} = [F \times L_{cl} + F_{p} \times \cos(\alpha)] / [2 \times (b \times \sigma_{cp1} \times K_{8} \\ L_{eff} = L_{cl} + L_{b} = \textbf{1707} \text{ mm} \\ & \sigma_{m} = \textbf{5.300} \text{ N/mm}^{2} \\ & \sigma_{m_adm} = \sigma_{m} \times K_{3} \times K_{7} \times K_{8} = \textbf{10.186} \text{ N/mm}^{2} \\ & \sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} \cos(\alpha) L_{eff} / (B A \text{ and } B \text{ and }$	[/m - F)] = 5 mm $(32 \ Z) = 4.214 N/mm^2$ stress within permissible limits	
Load duration factor Total UDL perpendicular to rafter Notional bearing length Effective span Check bending stress at purlin Bending stress parallel to grain Permissible bending stress Applied bending stress Check compressive stress parallel Compression stress parallel to grain	to grain at purlin	$\begin{split} & K_{3} = \textbf{1.50} \\ & F = F_{d} \cos(\alpha) s + F_{j} \cos(\alpha) = \textbf{0.216 kN} \\ & L_{b} = [F \times L_{cl} + F_{p} \times \cos(\alpha)] / [2 \times (b \times \sigma_{cp1} \times K_{8} \\ L_{eff} = L_{cl} + L_{b} = \textbf{1707 mm} \\ & \sigma_{m} = \textbf{5.300 N/mm^{2}} \\ & \sigma_{m_adm} = \sigma_{m} \times K_{3} \times K_{7} \times K_{8} = \textbf{10.186 N/mm^{2}} \\ & \sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} \cos(\alpha) L_{eff} / (BASS - Applied bending + BASS - BASS$	$[/m - F)] = 5 mm$ $(32 \stackrel{<}{} Z) = 4.214 N/mm^2$ stress within permissible limits	
Load duration factor Total UDL perpendicular to rafter Notional bearing length Effective span Check bending stress at purlin Bending stress parallel to grain Permissible bending stress Applied bending stress Check compressive stress parallel Compression stress parallel to grain Minimum modulus of elasticity	to grain at purlin	$\begin{split} & K_{3} = \textbf{1.50} \\ & F = F_{d} \cos(\alpha) s + F_{j} \cos(\alpha) = \textbf{0.216 kN} \\ & L_{b} = [F \times L_{cl} + F_{p} \times \cos(\alpha)] / [2 \times (b \times \sigma_{cp1} \times K_{8} \\ L_{eff} = L_{cl} + L_{b} = \textbf{1707 mm} \\ & \sigma_{m} = \textbf{5.300 N/mm^{2}} \\ & \sigma_{m_adm} = \sigma_{m} \times K_{3} \times K_{7} \times K_{8} = \textbf{10.186 N/mm^{2}} \\ & \sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} \cos(\alpha) L_{eff} / (BASS - Applied bending + SSS - SSSS - SSSSS - SSSSSS - SSSSSSSS$	<pre>I/m - F)] = 5 mm (32 [^] Z) = 4.214 N/mm² stress within permissible limits</pre>	
Load duration factor Total UDL perpendicular to rafter Notional bearing length Effective span Check bending stress at purlin Bending stress parallel to grain Permissible bending stress Applied bending stress Check compressive stress parallel Compression stress parallel to grain Minimum modulus of elasticity Compression member factor	to grain at purlin	$\begin{split} & K_{3} = \textbf{1.50} \\ & F = F_{d} \cos(\alpha) s + F_{j} \cos(\alpha) = \textbf{0.216 kN} \\ & L_{b} = [F \times L_{cl} + F_{p} \times \cos(\alpha)] / [2 \times (b \times \sigma_{cp1} \times K_{8} \\ L_{eff} = L_{cl} + L_{b} = \textbf{1707 mm} \\ & \sigma_{m} = \textbf{5.300 N/mm^{2}} \\ & \sigma_{m_adm} = \sigma_{m} \times K_{3} \times K_{7} \times K_{8} = \textbf{10.186 N/mm^{2}} \\ & \sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} \cos(\alpha) L_{eff} / (BASS - Applied bending + SASS - SASS $	<pre>i/m - F)] = 5 mm (32 ^ Z) = 4.214 N/mm² stress within permissible limits</pre>	
Load duration factor Total UDL perpendicular to rafter Notional bearing length Effective span Check bending stress at purlin Bending stress parallel to grain Permissible bending stress Applied bending stress Check compressive stress parallel Compression stress parallel to grain Minimum modulus of elasticity Compression member factor Permissible compressive stress	to grain at purlin	$\begin{split} & K_{3} = \textbf{1.50} \\ & F = F_{d} \cos(\alpha) s + F_{j} \cos(\alpha) = \textbf{0.216 kN} \\ & L_{b} = [F \times L_{cl} + F_{p} \times \cos(\alpha)] / [2 \times (b \times \sigma_{cp1} \times K_{8} \\ L_{eff} = L_{cl} + L_{b} = \textbf{1707 mm} \\ & \sigma_{m} = \textbf{5.300 N/mm}^{2} \\ & \sigma_{m_adm} = \sigma_{m} \times K_{3} \times K_{7} \times K_{8} = \textbf{10.186 N/mm}^{2} \\ & \sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} \cos(\alpha) L_{eff} / (PASS - Applied bending = \textbf{10}) \\ & \sigma_{c} = \textbf{6.800 N/mm}^{2} \\ & E_{min} = \textbf{5800 N/mm}^{2} \\ & K_{12} = \textbf{0.43} \\ & \sigma_{c_adm} = \sigma_{c} \times K_{3} \times K_{8} \times K_{12} = \textbf{4.779 N/mm}^{2} \end{split}$	$[-F)] = 5 \text{ mm}$ $(32 \stackrel{<}{} Z) = 4.214 \text{ N/mm}^2$ stress within permissible limits	
Load duration factor Total UDL perpendicular to rafter Notional bearing length Effective span Check bending stress at purlin Bending stress parallel to grain Permissible bending stress Applied bending stress Check compressive stress parallel Compression stress parallel to grain Minimum modulus of elasticity Compression member factor Permissible compressive stress Applied compressive stress	to grain at purlin	$\begin{split} & K_{3} = \textbf{1.50} \\ & F = F_{d} \cos(\alpha) s + F_{j} \cos(\alpha) = \textbf{0.216 kN} \\ & L_{b} = [F \times L_{cl} + F_{p} \times \cos(\alpha)] / [2 \times (b \times \sigma_{cp1} \times K_{8} \\ L_{eff} = L_{cl} + L_{b} = \textbf{1707 mm} \\ & \sigma_{m} = \textbf{5.300 N/mm^{2}} \\ & \sigma_{m_adm} = \sigma_{m} \times K_{3} \times K_{7} \times K_{8} = \textbf{10.186 N/mm^{2}} \\ & \sigma_{m_max} = F L_{eff}^{2} / (8 Z) + 3 F_{p} \cos(\alpha) L_{eff} / (BASS - Applied bending + SASS - Applied + Applied $	[J/m - F)] = 5 mm $(32 \ Z) = 4.214 N/mm^2$ stress within permissible limits $A)+F_p \ sin(\alpha)/A = 0.309$	

PASS - Applied compressive stress within permissible limits

	Scheme		Job Ref.	
		Thorpe Hall, Fylingthorpe	23/0510	
10 Almsford Road	Job		Sheet no./rev.	
Harrogate		PV Roof Assessment	11	
North Yorkshire				
HG2 8EQ Tel: 07749 838310	Cala by		Data	
Email: tim@hdesignsltd.co.uk	Calc. by	Timothy Hunt	28/11/2023	
		Thiothy Hult	20/11/2025	
Chask combined bonding and cor	nnuacciva ctuac	a namellal to grain at numlin		
Eviler stress	inpressive stress	$\mathbf{z} = -2 \mathbf{v} \mathbf{E} + (22 - 0)^2 11 \mathbf{N} \mathbf{w}^2$		
Euler stress		$G_e = \pi^2 \times E_{min} / \lambda^2 = 9.211 \text{ N/mim}^2$		
Euler coefficient		$K_{eu} = 1 - (1.5 \times \sigma_{c_{max}} \times K_{12} / \sigma_{e}) = 0.979$		
Combined axial compression and be	ending check	$\sigma_{m_max} / (\sigma_{m_adm} \times K_{eu}) + \sigma_{c_max} / \sigma_{c_adm} = 0.487 < 1$		
		PASS - Combined compressive and bending stress	es are within permissible limits	
Check bending stress in lower po	rtion of rafter			
Bending stress parallel to grain		$\sigma_m = \textbf{5.300} \ N/mm^2$		
Permissible bending stress		$\sigma_{m_adm} = \sigma_m \times K_3 \times K_7 \times K_8 = \textbf{10.186} \ \mathrm{N/mm^2}$		
Applied bending stress		$\sigma_{m_{max}} = F \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int cos(\alpha) \int L_{eff}^2 / (16 \int Z) + 13 \int F_p \int C \int $	_{eff} /(64 ´ Z) = 6.155 N/mm ²	
		PASS - Applied bending	stress within permissible limits	
Check compressive stress parallel	to grain in low	ver nortion of refter		
Compression stress parallel to grain	to grain in iow	$\sigma = 6.800 \text{ N/mm}^2$		
Minimum modulus of electicity		$G_c = 6.000 \text{ N/mm}^2$		
Compression member factor		$E_{\rm min} = 0.001 \mathrm{Mmm}$		
Demoissibile commensions stress		$K_{12} = 0.43$		
Permissible compressive stress	$\sigma_{c_adm} = \sigma_{c} \times K_{3} \times K_{8} \times K_{12} = 4.779 \text{ N/mm}^{2}$			
Applied compressive stress	$\sigma_{c_{max}} = 3$ F Leff $(\cot(\alpha)+4 \tan(\alpha))/(8$ A		$A)+F_{p} \sin(\alpha)/A = 0.356$	
N/mm ²				
		PASS - Applied compressive	stress within permissible limits	
Check combined bending and cor	npressive stress	s parallel to grain in lower portion of rafter		
Euler stress		$\sigma_e = \pi^2 \times E_{min} \ / \ \lambda^2 = \textbf{9.211} \ N/mm^2$		
Euler coefficient		$K_{eu} = 1 - (1.5 \times \sigma_{e_{max}} \times K_{12} \ / \ \sigma_{e}) = \textbf{0.975}$		
Combined axial compression and b	ending check	$\sigma_{m_max} / (\sigma_{m_adm} \times K_{eu}) + \sigma_{c_max} / \sigma_{c_adm} = 0.694 < 1$		
		PASS - Combined compressive and bending stress	es are within permissible limits	
Check shear stress				
Shear stress parallel to grain		$\tau = 0.670 \text{ N/mm}^2$		
Permissible shear stress		$\tau_{1} = \tau_{2} K_{2} \times K_{2} = 1 \ 106 \ \text{N/mm}^{2}$		
Applied shear stress		z = 15 E L m/(16 Å) + 2 E C	$a_{\alpha}(\alpha) / (2 (\Lambda) - 0.292)$	
Appried shear stress		$t_{\text{max}} = 13$ F Leff $/(10$ A) ± 3 Fp C	$OS(\alpha) / (2 - A) = 0.303$	
N/mm ²			, ,,,,, , ,,,,,,, ,,,,,,,,,,,,,,,,,,,,	
		PASS - Appuea snear	stress within permissible limits	
Check deflection				
Permissible deflection		$\delta_{adm} = 0.003 \times L_{eff} = \textbf{5.120} \text{ mm}$		
Bending deflection		$\delta_{b} = L_{eff}^{3} (F \perp L_{eff} / 185 + 0.015 \perp F_{p} \perp \cos(\alpha))$)) / (E_{mean} $(I) = 4.112 mm$	
Shear deflection		$\delta_s = 12 L_{eff} (F L_{eff} + 2 F_p \cos(\alpha))/(5)$	$(E_{mean} (A) = 0.225 \text{ mm}$	
Total deflection		$\delta_{max} = \delta_b + \delta_s = 4.337 \text{ mm}$		
		PASS - Total defle	ection within permissible limits	
			-	

SUMMARY

Increase in loading is not sufficient to take the original members out of their designed specification.

Therefore the roof is suitable for the proposed addition of Solar Panels.