Sirius Minerals

Phase 3 Works

NYMNPA 60 and 79 Surface Water Drainage Scheme

40-ARI-WS-71-PA-RP-1050

Rev 0 | 3 April 2017

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 234376-00

Ove Arup & Partners Ltd Admiral House Rose Wharf 78 East Street Leeds LS9 8EE United Kingdom www.arup.com

ARUP

Document Verification

ARUP

Job title		Phase 3 Works		Job number		
				234376-00		
Document title		NYMNPA	60 and 79 Surface V	Vater Drainage	File reference	
		Scheme		_	0-12-08	
Document 1	ef	40-ARI-WS	S-71-PA-RP-1050			
Revision	Date	Filename	REP-P10-WS-CD-004 SWD DoC 60 and 79 14-03-2017 Rev A.docx			
Draft A 14 March 2017		Description	First draft			
			Prepared by	Checked by	Approved by	
		Name	N. Ferro	D. Ainger	A. Hornung	
		Signature				
Rev 0	03 Apr 2017	Filename	40-ARI-WS-71-PA-RP-1050_0_IFU_20170331 SWD DoC 60 79.docx			
		Description	Incorporate comm	Incorporate comments and Issue		
			Prepared by	Checked by	Approved by	
		Name	N. Ferro	D. Ainger	A. Hornung	
		Signature	Netro	DIAire	AG Homeyos.	
		Filename	• • •	- U	\swarrow \vee	
		Description				
			Prepared by	Checked by	Approved by	
		Name				
		Signature				
		Filename			I	
		Description				
			Drew and has	Chashed ha	Ammound hu	
		Name	Prepared by	Checked by	Approved by	
		Signature				
	I		Issue Docum	nent Verification with	a Document	

Page

Contents

1	Intro	duction	1		
	1.1	Overview	1		
	1.2	Compliance with Conditions	2		
	1.3	Site and Location	4		
	1.4	Other Documents Key to this Report	4		
	1.5	Design Guidance	4		
2	Phase	Phase 3 Works Surface Water Drainage Design			
	2.1	General Arrangement	6		
	2.2	Design Principles	6		
	2.3	Drainage Features	7		
	2.4	Groundwater	10		
	2.5	Calculation Methodology	10		
	2.6	Calculation Results	11		
3	Concl	usions	14		

References

Appendices

Appendix A Phase 3 Masterplan

Appendix B

Phase 3 Drainage Layout

Appendix C

Surface Water Management Plan

Appendix D

Micro Drainage Model Outputs

Appendix E

Outfall Velocity and Silt Removal Calculations

Appendix F

Typical Drainage Details

1 Introduction

1.1 Overview

This document has been prepared on behalf of Sirius Minerals PLC and details the surface water drainage design for the Phase 3 Site Establishment at Woodsmith Mine (Phase 3 Works). This is required to discharge conditions 60 and 79 of the North York Moors National Park Authority (NYMNPA) planning permission NYM/2014/0676/MEIA [1].

This report only details the works required at the Woodsmith Mine site.

The Phase 3 Works comprise:

- General site clearance including demolition of all farm buildings and sheds, and localised tree and scrub clearance, as shown on Drawing 40-ARI-WS-71-CI-DR-1051;
- Excavation and construction of the south western extension of the upper tiered working platform at around 203m AOD, as shown on Drawing 40-ARI-WS-71-CI-DR-1053;
- Excavation and construction of the Platform for the Construction Welfare Facility, Parking Area and Concrete Batching Plant, as shown on Drawing 40-ARI-WS-71-CI-DR-1053;
- Construction of temporary and permanent soil mounds, including the basal liner for a future storage facility in the northeast corner of the site for non-hazardous non-inert spoil and three topsoil, subsoil and inert material storage bunds in the south western area of the site, as shown on drawings 40-ARI-WS-71-CI-DR-1053 and 40-ARI-WS-71-CI-DR-1055, with earthworks volumes presented in 40-ARI-WS-71-CI-DR-1054;
- Construction of surface water drainage, a temporary surface water attenuation pond and temporary wetland in the southern area and two permanent attenuation ponds and two wetland areas in the north eastern area, as shown on Drawing 40-ARI-WS-71-CI-DR-1050;
- Construction of a spring and groundwater drainage layer in the north eastern area, discharging into a wetland area, as shown on Drawing 40-ARI-WS-71-CI-DR-1080;
- Installation and commissioning of temporary dewatering as shown on Drawing 40-ARI-WS-71-CI-DR-1050;
- Erection on site of the Concrete Batching Plant as shown on Drawing 40-AMC-WS-72-SW-RA-0001, complete with reticulated water supplies and tanks;
- Construction of the drilling platform and temporary saline lagoon area for the groundwater reinjection well as shown on Drawing 40-ARI-WS-71-CI-DR-1057; and
- Provision of Construction Welfare and Security Facilities complete with hook-up of power, communications & water supplies and new waste water collection facilities.

1.2 Compliance with Conditions

The wording of planning condition 60, and where the necessary material has been provided within the report, is set out in the table below:

NYMNPA 60	Compliance with Condition 60
Surface water management at the Doves Nest Farm site during construction shall incorporate measures to slow water flow such that sediment settles out prior to surface water draining from the site into the Sneaton Thorpe Beck. Prior to the commencement of preparatory works the design of the surface water management system at Doves Nest Farm shall be submitted to and agreed in writing by the MPA to ensure it incorporates measures that may be required to prevent sediment entering the Sneaton Thorpe Beck causing harm to the brown trout population present there.	Refer to the Surface Water Management Plan and Construction Sequencing in Appendix C.

The wording of planning condition 79, and where the necessary material has been provided within the report, is set out in the table below:

NYMNPA 79	Compliance with Condition 79
No development shall take place at Doves Nest Farm until a Surface Water Drainage Scheme for the site, based on sustainable drainage principles and an assessment of the hydrological and hydro-geological context of the development, has been submitted to and approved in writing by the MPA.	Refer to this report and appendices for the surface water drainage scheme. Refer to Sections 2.2, 2.3, 2.4, 2.5 and 2.6.
The drainage strategy must demonstrate that surface water run-off generated up to and including the 1 in 100 critical storm will not exceed the run-off from the undeveloped site following the corresponding rainfall event.	This element of condition 79 does not need to be discharged for the Phase 3 Works because the 1 in 100 critical storm is applicable only to the operational phase. Refer to section 2.2.
The scheme shall include: Confirmation that the surface water drainage system is to be built first so that it is available to provide the drainage for the construction phase as well as the completed mine head, and is to be in accordance with information provided in the Supplementary Environmental Information report (specifically Section 15 and Appendix C). Details of the surface water drainage system will include a plan for silt management and reduction during the construction phase;	Refer to the Surface Water Management Plan and Construction Sequencing in Appendix C. Refer to sections 1.4, 2.2, 2.3 and 2.6.
The scheme shall include: In order to construct the settlement facility/facilities some site preparation works have to be undertaken before the settlement facility/facilities are operational - details of temporary silt reduction and management measures shall be included;	Refer to the Surface Water Management Plan and Construction Sequencing in Appendix C. Refer to the Typical Drainage Details in Appendix F
The scheme shall include:	Refer to section 2.6 and Appendix D.

Surface water discharge rates from the impermeable areas of the site are to be limited to greenfield Qbar flows as calculated in Appendix C of the Supplementary Environmental Information report (an overall maximum surface water discharge of 6.5 litres per second per hectare);	
The scheme shall include: Sufficient attenuation storage for up to and including the 1 in 100 year storm event plus a 30% allowance for climate change, and surcharging the drainage system can be stored on the site without risk to people or property and without overflowing into a watercourse;	This element of condition 79 does not need to be discharged for the Phase 3 Works because the 1 in 100 critical storm is applicable only to the operational phase. Refer to section 2.2.
The scheme shall include: Details of the design of the attenuation storage basins;	Refer to section 2.6 and Appendix F
The scheme shall include: Details of the outfalls to watercourse(s), including the provision of a penstock, erosion protection measures and measures to ensure velocities are limited to no more than 0.3m per second unless otherwise agreed by the MPA in consultation with the Environment Agency;	Refer to section 2.6 and Appendix E and F.
The scheme shall include: Details of how the whole surface water drainage system will be designed so as to maximise its biodiversity benefits;	This element of condition 79 does not need to be discharged for the Phase 3 Works because the final restoration of the site will occur during later phases of the project.
The scheme shall include: Drainage from the landscaped areas is to drain into the proposed swales, upstream of a check dam where required to reduce velocities;	Refer to section 2.3.1 and Appendix B, D and F.
<i>The scheme shall include:</i> <i>Details of the proposed rainwater harvesting system;</i>	This element of condition 79 does not need to be discharged for the Phase 3 Works because no permanent buildings are to be constructed in this phase.
The scheme shall include: The provision of permeable surfacing on areas where it can be demonstrated that the risk of pollution is low;	This element of condition 79 does not need to be discharged for the Phase 3 Works because no permanent permeable surfacing is proposed during this phase.
The scheme shall include: Details of how clean roof water shall be discharged to ground;	This element of condition 79 does not need to be discharged for the Phase 3 Works because no permanent buildings are to be constructed in this phase.
The scheme shall include: Details of how the entire surface water drainage system will be maintained and managed throughout the lifetime of the development, including the construction phase. This must include details of maintenance to deal with any siltation of the attenuation storage basins and any resultant loss of capacity; and	Refer to the Surface Water Management Plan in Appendix C.
The scheme shall include: A timetable for the implementation of the Surface Water Drainage Scheme, including during the construction phase. This is to include details regarding	Refer to the Surface Water Management Plan and Construction Sequencing in Appendix C.

the phasing of the construction works demonstrating that the storage available during construction is maximised (i.e. that the period of time that only the minimum 1 in 20 standard of protection is kept to the shortest possible).	Refer to section 2.6.
Development shall thereafter proceed only in strict accordance with the approved Surface Water Drainage Scheme and the timetable included within it. Once implemented, the Surface Water Drainage Scheme shall be retained and maintained throughout the lifetime of the development such that it continues to function in the manner intended and so as to ensure identified limits are not breached.	Refer to the Surface Water Management Plan and Construction Sequencing in Appendix C.

1.3 Site and Location

The Woodsmith Mine site is located approximately 5 km south of Whitby bounded by the B1416 to the West/South. The site is located in the River Esk catchment and at the very upper reaches of the Sneaton Thorpe Beck.

1.4 Other Documents Key to this Report

BWB undertook the Baseline Surface Hydrology report, Ref: LDT/2021/BSH [2]. This has been used to inform the surface water drainage (SWD) design. The SWD design follows the principles set out in the Surface Water Drainage Design Parameters report, Ref: LDT/2021/SWDS [3] and the Surface Water Drainage - Design Basis Report for Dove's Nest Site, Ref: REP-P2-CD-001 [4]. The design has been developed in parallel with the masterplan for the site which is shown in Appendix A, *"Woodsmith Mine Construction Phase 3 Masterplan 40-ARI-WS-71-CI-DR-1050"*.

1.5 Design Guidance

The design standards and guidance used in the SWD design for the site include:

- Sewers for Adoption (7th Edition, 2012).
- BS EN 752 Drains and sewer systems outside buildings.
- DEFRA, Rainfall runoff management for developments Report SC030219.
- Technical Guidance to National Planning Policy Framework (NPPF).
- Design Analysis of urban storm drainage The Wallingford Procedure.
- CIRIA Report C697, The SuDS Manual, 2007.
- CIRIA Report C753, The SuDS Manual, 2015.
- CIRIA Report C609, Sustainable Drainage Systems Hydraulic, Structural and water quality advice, 2004.
- CIRIA Book 14, The Design of Flood Storage Reservoirs, 1993.
- CIRIA Report 156, Infiltration Drainage Manual of Good practice, 1996.

- Environment Agency and Department for Environment, Food & Rural Affairs, Pollution prevention for businesses, 12 July 2016.
- BRE Digest 365, Soakaway Design 2012.
- Environment Agency Guidance on Outfalls: Flood Defence Information Sheet No. 3.
- Fluvial Forms and Processes, A New Perspective, David Knighton, 1998.
- Open-channel hydraulics: New York, McGraw-Hill, Chow, V.T., 1959.

2 Phase 3 Works Surface Water Drainage Design

2.1 General Arrangement

The masterplan for the Phase 3 Works (40-ARI-WS-71-CI-DR-1050) is included in Appendix A.

2.2 Design Principles

The SWD has been designed to drain the hard standing areas, the landscaped areas and the access road, so that the development does not increase flood risk to the surrounding area and manages flood risk at the site. To help minimise runoff from bare ground and to reduce any possible siltation of watercourses, the SWD will be one of the first construction activities. Refer to the Surface Water Management Plan in Appendix C for more details of the construction programme.

Where the potential for contamination of surface water runoff by hydrocarbons has been assessed to be sufficiently high, the surface water runoff from these areas will pass through an oil separator before being passed first to a silt removal facility then to a series of attenuation ponds, then through a series of wetlands before discharging into the local watercourse.

The runoff from developed and disturbed areas will be directed to the attenuation ponds. These include hard standing areas; disturbed soils; granular access road and, due to the natural slope of the ground, some of the undisturbed vegetated permeable areas. One small section of the access road near the welfare entrance cannot gravitate to the attenuation ponds, and as such will be treated locally before discharging to the tributaries of Sneaton Thorpe Beck. This is described further in the Surface Water Management Plan in Appendix C and the technical note for the highways work at the welfare entrance (reference TN-P10-DNF-CH-001) [5].

The surface water runoff from temporary spoil bunds to the North and East of the platform were discussed in the Phase 2 Surface Water Drainage Scheme report (reference REP-P10-DNF-CD-001) [6]. In Phase 3 a perimeter swale and a wetland will be constructed to the East (downhill) of these temporary spoil bunds. This swale and wetland will collect and treat runoff from the construction of the permanent landscaped bund that will start to form in the North East corner of the site. The discharge from this wetland will discharge into the attenuation ponds until the permanent landscaped bund is complete and the risk of sediment entering the watercourse is minimal. The connection to the attenuation pond will be maintained throughout Phase 3. The locations of these drainage features are shown on the Surface Water Drainage General Arrangement drawing 40-ARI-WS-71-CI-DR-1070 in Appendix B.

In Phase 3 a second catchment is required to drain runoff from an area of temporary spoil and landscaped bunds to the south of the platform and laydown areas. This catchment does not drain any hard standing areas and so should not pass through the oil separators. The runoff from the spoil bunds will discharge into an attenuation pond via swales with check dams and then through a wetland to control the flow and remove sediment from the runoff. This catchment is

temporary prior to construction within Haxby plantation. Silt fences will be constructed at the base of all bunds to reduce sediment getting into the runoff.

For the impermeability values used in the design for the different area types, refer to table 2.0. These values are conservative and have been derived using the surface water drainage design basis report, (reference REP-P2-CD-001) [4], which is in accordance with BS EN 752.

Area	Percentage Impermeable
Hard standing	100%
Disturbed bare soils	80%
Granular Access Road	80%
Landscaped Bunds	30%
Undisturbed Fields/grass	30%

Table 2.0: Specific Impermeability for area types

Only surface water runoff is to be directed to the attenuation ponds, other sources of water, such as ground water and waste water, will not discharge to the attenuation ponds.

During the Phase 3 Works, the discharge rate from all the drained areas on site will be limited to the theoretical Q_{Bar} greenfield runoff rate for return periods up to the 1 in 20 year event for the critical duration. This is in accordance with the sustainable drainage principles outlined in the Surface Water Drainage Design Parameters report, (reference: LDT/2021/SWDS) [3] and has been agreed by the Environment Agency in a letter dated 13th March 2014 (reference: RA/2014/127863/01-L01). During the operational phase, the discharge rate will be limited to the theoretical Q_{Bar} greenfield runoff rate for return periods up to the 1 in 100 year event for the critical duration.

The sequencing and timescales of constructing the drainage during the Phase 3 Works is summarised in the Surface Water Management Plan in Appendix C.

2.3 Drainage Features

A drainage plan for the Woodsmith Mine site has been developed. The drainage plan shows principal drainage infrastructure for the drained areas during Phase 3, including silt fences, swales, ditches, carrier pipes, oil separators, a silt removal facility, attenuation ponds, wetlands and outfalls.

Refer to the general arrangement drawing, "40-ARI-WS-71-CI-DR-1070 Woodsmith Mine Surface Water Drainage General Arrangement" in Appendix B for the location of the principal proposed SWD features.

Appendix F contains typical details of drainage features such as swales, ditches, check dams and attenuation pond details.

2.3.1 Swales/Ditches

Additional swales and ditches, to those constructed in Phase 2, will be used to collect surface water runoff at the toe of the landscaping bunds and around the perimeter of the hard standing platform.

They will incorporate check dams to create a terraced ponding effect, thus helping to attenuate the flow. Energy dissipation / erosion protection will be provided where required, downstream of the check dams across both the base and sides of the swale/ditch. Where possible, swales/ditches that are not located next to hard standing will incorporate a 3.5m wide access route to allow maintenance vehicles to access these assets.

Swales/ditches will also be used to intercept any runoff from undisturbed areas so that this water does not flow onto disturbed areas of the construction. Where possible, these swales/ditches will direct the runoff to local ditches/streams without going through attenuation ponds in order to mimic the natural and existing hydraulic characteristics of the site. Refer to the general arrangement drawing in Appendix B.

2.3.2 Silt Removal Facility

The silt removal facility, constructed during Phase 2, will incorporate a long flat treatment ditch designed to settle out fine sediments that get past the silt fences and check dams. The ditch will be lined with concrete canvas or similar to enable easier dredging operations and will have a control valve on the outlet, so that dredging can be undertaken without sediment laden water escaping downstream to the attenuation pond.

2.3.3 Attenuation Ponds

In the Phase 2 report [6], the revised location for the surface water attenuation ponds is explained.

During Phase 3, the attenuation ponds and wetland receiving runoff from the hard standing platform and laydown areas in the north of the site, as described in section 2.2, will be constructed.

A temporary attenuation pond to attenuate runoff from the bunds will be constructed in Phase 3. The location of the ponds are shown on the general arrangement drawing in Appendix B.

The ponds have capacity to store rainfall runoff such that no surface flooding occurs on the site during the 1 in 20 year design critical rainfall event. If a rainfall event exceeds the design capacity, an emergency overflow will be incorporated to allow water to discharge from the ponds without compromising their integrity. This is achieved by the width and gradient of the overflows and the erosion protection on the overflows.

As stated in the planning conditions and as agreed with the Environment Agency in a letter dated 13^{th} March 2014 (reference: RA/2014/127863/01-L01), during construction, the discharge rate from the attenuation pond will be limited to the Q_{Bar} greenfield runoff rate for return periods up to the 1 in 20 year event for the critical duration. The method of calculating Q_{Bar} is detailed in the BWB Baseline Surface Hydrology report, Ref LDT/2021/BSH. [2].

2.3.4 Wetlands

During Phase 3, the three wetlands will be constructed forming the final stage of SuDS treatment before discharge to the tributaries of Sneaton Thorpe Beck.

The northernmost permeable catchment drains to an existing low point on the north eastern boundary of the site. Although a wetland is not strictly needed for permeable catchments, the existing land is already marshy and therefore conducive to the incorporation of a wetland / ecological enhancement area. Therefore, this wetland will be constructed but the outfall will be temporarily directed into the attenuation ponds as silty runoff is expected during Phase 3. During later phases the wetland will be landscaped and planted appropriately once the bunds upstream have vegetation established. At this stage the wetland outfall will be amended to discharge into the existing tributary of Sneaton Thorpe Beck.

The catchment to the south of the platform draining the landscaped bunds will pass through a temporary wetland, to provide the final stages of treatment prior to discharge to an existing ditch.

A permanent wetland will be constructed to provide the final stage of treatment for the runoff from the hard standing platform and laydown areas in the north of the site after passing through the attenuation ponds.

2.3.5 Additional Sediment Control

In addition to the silt removal facility, attenuation pond, swales / ditches and check dams, there will be further sediment control techniques and features such as silt fences at the toe of the bare landscaped bunds. These features will be maintained throughout the Phase 3 Works to ensure the silt runoff is managed appropriately. Further details can be found in the Surface Water Management Plan in Appendix C.

2.3.6 Oil Separators

Oil separators will be provided on all SWD systems installed to collect and convey runoff from hard standing areas. The separators will be designed in accordance with the Environment Agency's "Pollution Prevention for Businesses" guidance. The locations of the separators are shown on the general arrangement drawing in Appendix B.

2.3.7 Flow controls

The discharge from the attenuation ponds will be controlled by flow control devices such as an orifice plates or vortex flow control devices (e.g. Hydrobrakes), which will be installed as soon as the ponds are constructed. These can be easily modified or replaced as and when required throughout subsequent phases of construction to maintain the required design standard, i.e. a maximum allowable rate of discharge equating to 6.5 litres per second per hectare.

2.3.8 Outfalls

One permanent and two temporary outfalls will be constructed during the Phase 3 works, as shown on the general arrangement drawing in Appendix B. The

temporary outfall from the Phase 2 attenuation pond will be removed and a permanent outfall downstream of the permanent wetland taking runoff from the hard standing catchment will be constructed. To ensure velocities are kept to a minimum, this outfall will comprise a wide weir with a gentle gradient slope to the watercourse. Water from the wetland will trickle over this weir and onto the slope, which will have erosion protection to assist vegetation to establish.

A temporary outfall from the wetland on the Southern catchment will be constructed. It will also be formed with a weir and gentle slope directing water to the existing field ditch.

A second temporary outfall will be constructed downstream of the granular reinjection borehole pad. This outfall is located downstream of an oil separator, and as such will be via a pipe and concrete headwall. A typical outfall detail is shown in Appendix F.

During later phases, these temporary outfalls will be removed and additional permanent outfall arrangements will be constructed.

Land Drainage Consent will be obtained for any temporary or permanent structures in or adjacent to the watercourses.

2.4 Groundwater

There will be no permanent ground water discharges to the proposed SWD attenuation features. On impermeable networks, where some drainage features are required below normal ground water level, liners will be used to exclude ground water from the SWD system.

In Phase 3, for stability purposes, the proposed landscaped bund at the north eastern corner of the site may require a drainage blanket to be installed at formation level to drain existing high ground water levels. This would be delivered using a series of granular trenches discharging to the nearest surface water drainage feature. The extent of these granular drainage blankets will be determined when the top soil and subsoil is removed.

All the landscaping and temporary spoil bunds will be surrounded by swales. The swales will have check dams to attenuate the runoff during rainfall events and help to settle out sediments. Although no positive infiltration will be provided, over time some of this water will infiltrate into the superficial deposits.

2.5 Calculation Methodology

The Phase 3 Works layout for the Woodsmith Mine has been assessed and the required attenuation volumes calculated. The results are shown in section 2.6.

The allowable rates of discharge from the ponds have been calculated for the Phase 3 Works based on the Q_{Bar} greenfield runoff rate for the total contributing area.

For the Phase 3 Works, a 1 in 20 year return period design storm with no climate change allowance has been applied to a MicroDrainage model of the proposed network. Simulations have been undertaken using a range of durations from 15 minutes to seven days to determine the critical duration for each part of the network to ensure no flooding occurs and the attenuation is sufficient.

2.6 Calculation Results

The MicroDrainage model outputs in Appendix D demonstrate that the design described in this report meets the requirements set out in the planning conditions [1]. In particular, the discharge rate from the developed areas has been limited to the Q_{Bar} greenfield runoff rate and the volume of attenuation provided is sufficient to attenuate flows up to the 1 in 20 year return period event.

Runoff Rates

The allowable Q_{Bar} greenfield runoff rate is 6.5 l/s/ha, based on the Baseline Surface Hydrology report [2].

The flow rate is controlled by flow control devices at the outlets of the attenuation ponds. Table 2.1 summarises the modelling outputs in Appendix D.

	Northern Catchment	Southern Catchment	Refer to:
Gross Area drained	25.38 hectares	2.58 hectares	Appendix D, Area Summary table
Greenfield Runoff Rate (Allowable Rate of Discharge)	6.5 x 25.38 = 165 l/s	6.5 x 2.58 = 16.8 l/s	
Maximum modelled rate of discharge	77.7 l/s	12.0 l/s	Appendix D, critical results by maximum level for Pipes PH3-N- 1.037 and PH3-S-1.020

Table 2.1 Summary of modelled Runoff Rates

Volume of Attenuation

A summary of the MicroDrainage modelling results are shown in Table 2.2 and the modelling outputs are shown in Appendix D.

	Northern Catchment	Southern Catchment	Refer to:
Volume used in MicroDrainage model	8838 m ³	471 m ³	Appendix D, Graphs for Pipes PH3-N-1.034 to 1.036 and Pipe PH3-S- 1.009
Volume provided by proposed Phase 3 Earthworks Design	9900 m ³	1100 m ³	Appendix B, Volumes provided on General Arrangement Drawing.

Table 2.2 Summary of modelled attenuation volume requirements

In both catchments the attenuation ponds provided in the earthworks design have sufficient storage volumes to attenuate surface water runoff to the allowable rate of discharge.

In the Northern catchment, the storage provided has been maximised to minimise the risk of sediment discharging into the watercourse. Providing additional storage means that the rate of discharge can be significantly reduced to approximately half of the allowable greenfield runoff rate. The Southern catchment is temporary and, during Phase 3, the volume stored is less than half the total storage provided and hence the rate of discharge is also lower than the allowable greenfield runoff rate.

Silt Removal

As stated in the Surface Water Drainage Design Parameters report, Ref: LDT/2021/SWDS [3], a minimum of three stages of treatment have been provided to minimise the risk of sediments entering the tributaries of Sneaton Thorpe Beck. The design in Phase 3 incorporates; swales and ditches with check dams, infiltration to ground, oil separators with silt traps, a silt removal facility a series of attenuation ponds and wetlands.

Calculations have been carried out to estimate the percentage removal of sediments in the silt removal facility, attenuation ponds and wetlands using the 1 in 20 year critical duration storm event. CIRIA Book 14, Chapter 6.5, "Estimating Pollutant Removal Efficiency" was used for this calculation. A summary of the results are shown in the table below. The calculations are provided in Appendix E.

Particle	0	% Removal in Silt Removal Facility	% Removal in Attenuation Ponds	% Removal in Wetland	Total % Removed
Coarse Sand	200	100%			100%
Fine Sand	22	100%			100%
Coarse Silt	6.7	100%			100%
Fine Silt	0.18	68%	100%		100%
Coarse Clay	0.016	10%	76%	33%	85%
Fine Clay	0.011	7%	59%	23%	70%

Table 2.3 Summary of Silt Removal Calculations for Northern Catchment

In the Northern catchment, for the critical duration 1 in 20 year storm event, all the sands and most of the silts are shown to drop out before reaching the attenuation pond. In the series of ponds, the remaining silts and approximately 68% of all clays would drop out. In the wetland, a further 28% would drop out giving a total of about 78% clay removal for the whole system, before discharging to the watercourse. These calculations are conservative, as they do not take into account the additional settlement that would occur in the swales, the oil separator, behind the silt fences and in the check dams. The calculations are also conservative because they use the maximum flow rates generated during the critical duration storm.

In large events, such as the 1 in 20 year critical duration storm, sediment erosion and transportation would be expected in the existing tributaries. Therefore, removal of 78% clays and 100% of larger particles in the 1 in 20 year storm is considered acceptable.

Particle	Settling velocities (mm/s)	% Removal in Attenuation pond	% Removal in Wetland	Total % Removed
Coarse Sand	200	100%		100%
Fine Sand	22	100%		100%
Coarse Silt	6.7	100%		100%
Fine Silt	0.18	100%		100%
Coarse Clay	0.016	100%		100%
Fine Clay	0.011	84%	76%	96%

Table 2.4 Summary of Silt Removal Calculations for Southern Catchment

In the Southern catchment, for the critical duration 1 in 20 year storm event, all the sands and silts are shown to drop out in the attenuation pond. 98% of clays are shown to drop out in the pond and wetland before discharging to the watercourse. These calculations are conservative as they do not take into account the additional settlement that would occur in the swales, behind the silt fences and in the check dams. The calculations are also conservative because they use the maximum flow rates generated during the critical duration storm.

In large events such as the 1 in 20 year critical duration storm sediment erosion and transportation would be expected in the existing tributaries. Therefore, removal of 98% clays and 100% of larger particles in the 1 in 20 year storm is considered acceptable.

Outfall Velocities

Appendix E contains an assessment of the existing tributaries of Sneaton Thorpe Beck downstream of the site. The assessment demonstrates that a maximum allowable velocity of 1.2m/s would be appropriate for these tributaries.

As described in section 2.3.8, there are two temporary outfalls to be constructed during the Phase 3 Works, as shown in the general arrangement drawing in Appendix B.

The first temporary outfall drains the granular reinjection borehole pad, which will be drained via filter drains and a catchpit, through an oil separator and into the ditch via an outfall headwall. Appendix E contains calculations specific to this temporary outfall. The calculations show that using an outfall with an upstand or "stilling basin" the maximum velocity discharging in the critical storm event is 0.6 m/s. This is less than the allowable discharge rate of 1.2m/s and therefore can be considered acceptable. A typical outfall headwall detail is shown in Appendix F.

The second temporary outfall is downstream of the temporary wetland draining the landscaped bunds to the south of the platform. Appendix D contains model outputs for the outfall velocity. The graph show that the maximum velocity discharging in the critical storm event is approximately 0.1 m/s and is therefore considered acceptable (it is less than 1.2m/s).

There is one permanent outfall to be constructed during the Phase 3 Works. This outfall discharge flows from the Northern catchment after passing through the attenuation ponds and wetland. Appendix D contains model outputs for the

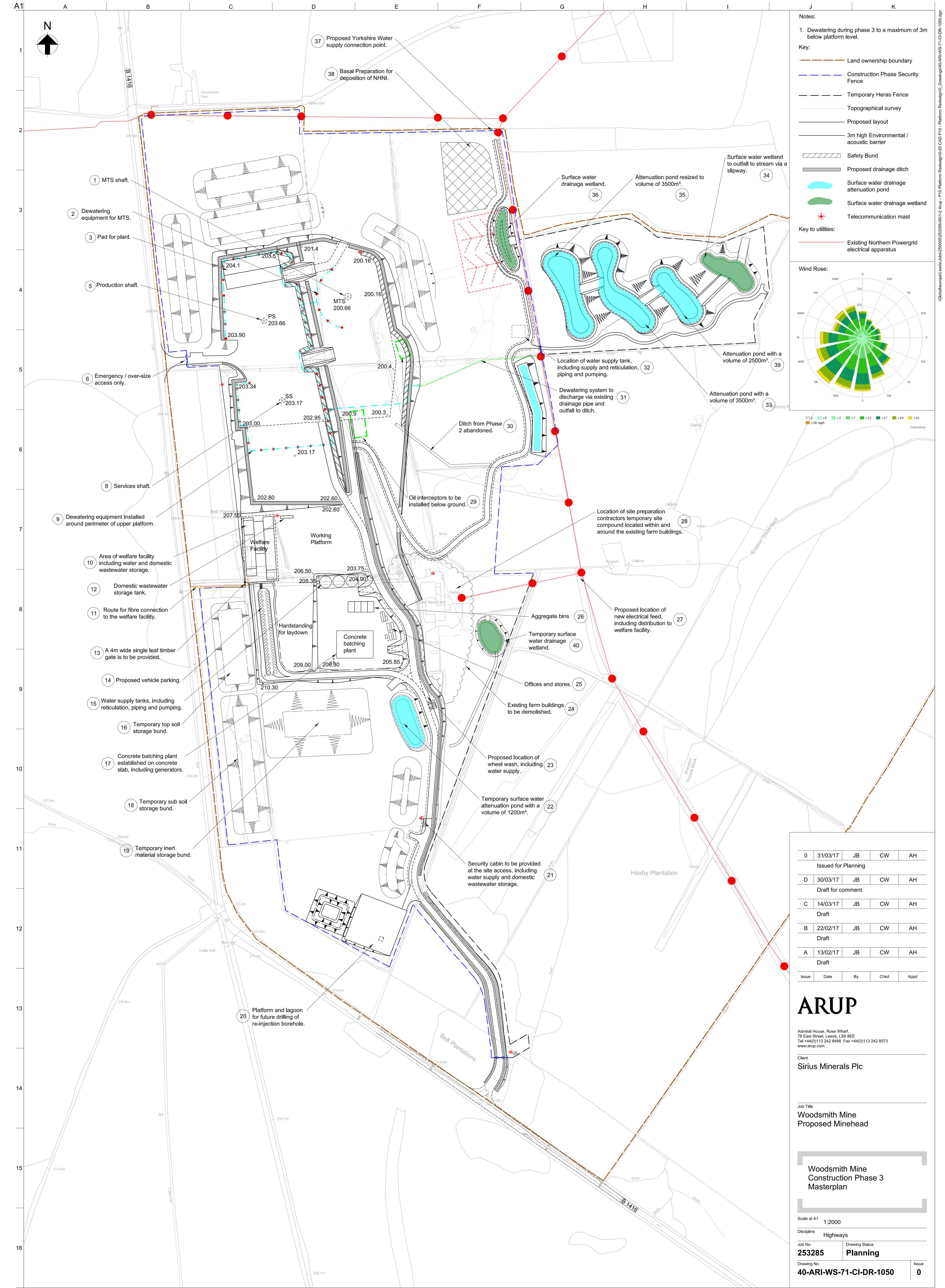
outfall velocity. The graph show that the maximum velocity discharging in the critical storm event is approximately 0.2 m/s and is therefore considered acceptable (it is less than 1.2 m/s).

3 Conclusions

The design demonstrates how the surface water will be managed on site during the Phase 3 Works. The proposed arrangements will ensure that the site is not at risk of flooding and does not impact on flood risk elsewhere.

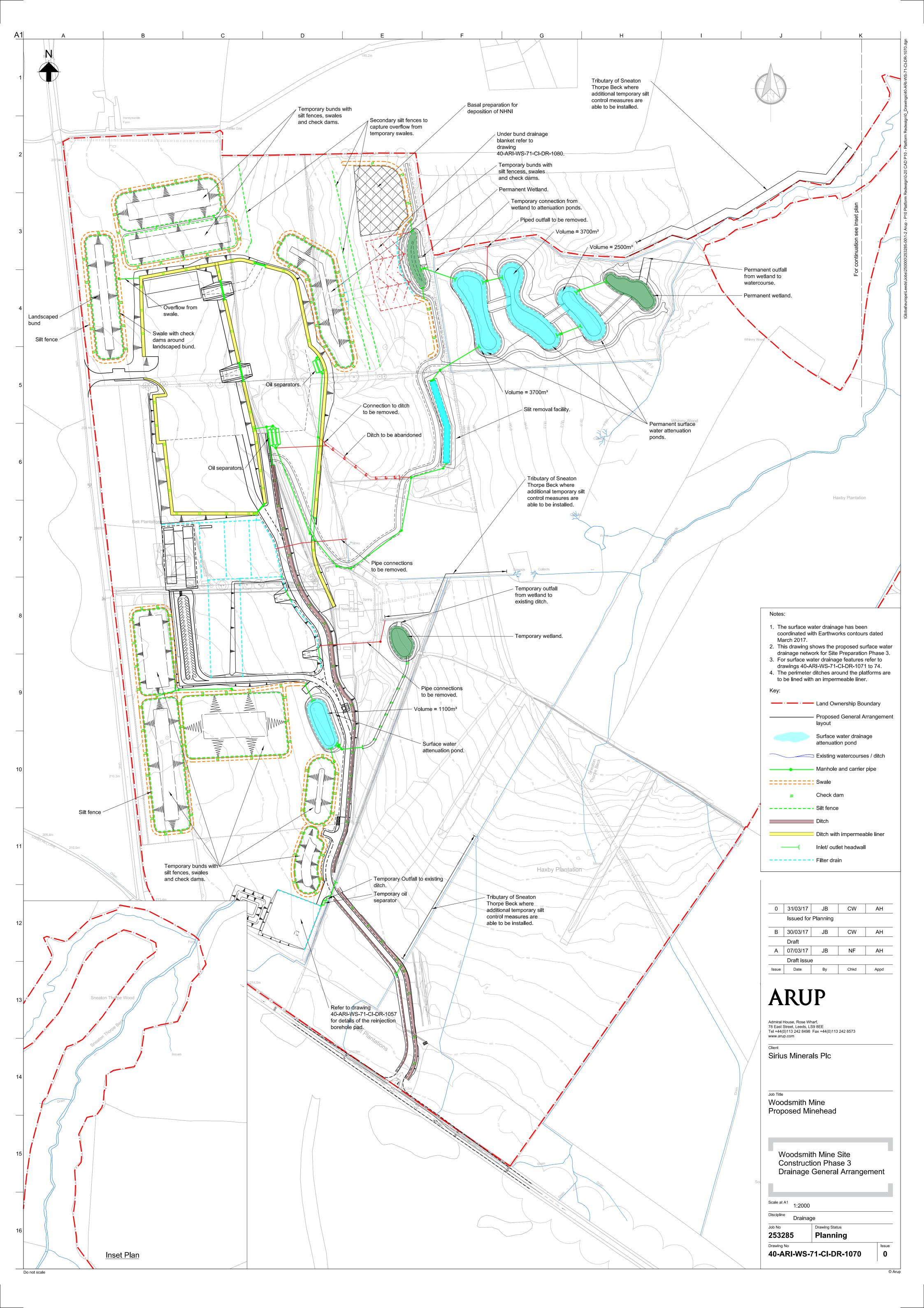
The MicroDrainage model outputs demonstrate that the design described in this report meets the requirements set out in the planning conditions. In particular the discharge rates from the developed areas have been limited to the Q_{Bar} greenfield runoff rates and the volume of attenuation provided is sufficient to attenuate flows up to the 1 in 20 year return period event.

The design complies with the sustainable drainage strategy. In particular an appropriate treatment train is proposed and the calculations demonstrate that the provision for sediment removal is sufficient prior to discharging to the watercourse and that the outfall velocity is appropriate to minimise the impact on the receiving water body.


This report demonstrates that the SWD design and management during the Phase 3 Works meets the requirements of conditions 60 and 79 of the North York Moors National Park Authority (NYMNPA) planning permission NYM/2014/0676/MEIA.

The necessary land drainage consents will be applied for from North Yorkshire County Council ahead of the works. References

[1]	North York Moors National Park Authority planning permission NYM/2014/0676/MEIA.
[2]	Baseline Surface Hydrology, Ref LDT/2021/BSH, Revision F, BWB, 11/09/2014.
[3]	Surface Water Drainage Design Parameters, Ref LDT/2021/SWDS, Revision D, BWB, 12/09/2014.
[4]	Surface Water Drainage - Design Basis Report for Dove's Nest Site, REP-P2-CD-001, Rev 3, Arup, July 2014.
[5]	Highway Improvement 2: Dove's Nest Farm Welfare Access B1416. Technical Note, TN-P10-DNF-CH-001, Rev A, Arup, November 2016.
[6]	NYMNPA 60 and 79 Surface Water Drainage Scheme, REP-P10- DNF-CD-001, Rev 1, Arup, December 2016.


Appendix A

Phase 3 Masterplan

Appendix B

Phase 3 Drainage Layout

Appendix C

Surface Water Management Plan

Sirius Minerals

Phase 3 Works

NYMNPA 60 and 79: Surface Water Management Plan

40-ARI-WS-71-PA-RP-1051

Rev 0 | 31 March 2017

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 234376-00

Ove Arup & Partners Ltd Admiral House Rose Wharf 78 East Street Leeds LS9 8EE United Kingdom www.arup.com

ARUP

Document Verification

Job title		Phase 3 Wo	orks		Job number
					234376-00
Document ti	itle	NYMNPA	60 and 79: Surfa	ce Water Management	File reference
		Plan			0-12-8
Document r	ef	40-ARI-WS	S-71-PA-RP-105	1	
Revision	Date	Filename	REP-P10-WS-0 20170313 Rev	CD-003 Phase 3 SW Ma A.docx	anagement Plan
Draft A	13 Mar 2017	Description	First draft		
			Prepared by	Checked by	Approved by
		Name	N. Ferro	D. Ainger	A.Hornung
		Signature			
Rev 0	31 Mar	Filename	40-ARI-WS-71	-PA-RP-1051_0_IFU_2	20170313 SWMP.docx
	2017	Description	Incorporated co		
			Prepared by	Checked by	Approved by
		Name	N. Ferro	D. Ainger	A. Hornung
		Signature	NJSerro.	DJAirgan	AG Homanos.
		Filename			$\sim \sim$
		Description			
			Prepared by	Checked by	Approved by
		Name			
		Signature			
		Filename			
		Description			
			Prepared by	Checked by	Approved by
		Name			
		Signature			
	1	1	Issue Do	cument Verification with I	Document 🗸

Contents

		Page
1	Surface Water Management Plan (Phase 3)	1
2	Surface Water Drainage – Sequence of Works and Construction Methods	3

1 Surface Water Management Plan (Phase 3)

For the Surface Water Management Plan for the previous phase of construction (Phase 2) refer to document REP-P10-DNF-CD-002, Rev 1. This Plan for Phase 3 is very similar to the Phase 2 Plan but it has been amended to suit the new drainage configuration and features that are constructed in Phase 3.

There are a range of methodologies for managing sediment contaminated surface water runoff from construction sites, with the method used being dependent on the volumes of surface water runoff and the levels of sedimentation. The surface water drainage masterplan for the Phase 3 Works is shown on drawing 40-ARI-WS-71-CI-DR-1070. This drawing shows the location of the main drainage network and the features to manage sediment. Typical details of the drainage features are shown on drawings 40-ARI-WS-71-CI-DR-1071 to 1074.

As far as practicable, surface water runoff from areas of hard standing will be kept separate from those areas where sediment contaminated surface water runoff is anticipated. While runoff from areas of hard standing is not anticipated to generate large quantities of sediment, this surface water will be collected in hard standing perimeter ditches with check dams and passed through oil separators, a silt removal facility, attenuation storage ponds and a wetland before being discharged to the tributaries of Sneaton Thorpe Beck.

Surface water runoff from temporary spoil bunds and permanent landscaped bunds will be controlled by the aid of swales with check dams and cleansed with hay/heather bales and silt fencing before being passed through the treatment train of attenuation ponds and wetlands. There will be multiple secondary silt fences positioned in fields downstream of some swales to intercept, slow and treat any water that seeps over the edge of the swales to mimic a more 'natural' response and avoid surface water 'sheeting' off the slopes.

The drainage of the main access road connecting the Welfare entrance and the platform will combine with the drainage from the platform and drain through the treatment train. There is a short section of the access road near the welfare entrance that cannot gravitate to the main attenuation pond. For this section of the access road, local measures will be applied similar to the treatment methodology described in the Technical Note TN-P10-DNF-CH-001 Rev B for the highways work at the welfare entrance.

The discharge from the wetlands will be monitored for suspended solids, using a combination of visual monitoring and turbidity meter monitoring in accordance with the Groundwater and Surface Water Monitoring Scheme, condition NYMNPA 46. If the trigger levels are exceeded the appropriate plan of action will be implemented in accordance with the remedial action plan condition NYMNPA 46. Depending on the results a number of options are available:

The penstock on the attenuation pond can be temporarily closed or partially closed to temporarily reduce the flow to the watercourse and increase the retention time to allow the sediments to settle out. This will be particularly effective for short intense storms. These temporary measures can be put in place without

compromising the overall drainage strategy for Phase 3. This would be actively managed so that the pond is empty before the next storm event occurs.

Additional treatment such as hay/heather bales and silt fences could be put in place in the tributaries of Sneaton Thorpe Beck downstream of the outfall locations but still within the site boundary. An experienced drainage engineer or geomorphologist will supervise the placement of these features to maximise sediment removal. These additional treatments will be readily available and stored local to the beck, should the need arise.

An environmentally friendly coagulant can be used in specific check dams upstream of the silt removal facility to promote flocculation of the finer particles within the storage areas and speed up the settling rate.

In addition to inspections of the discharges, regular monitoring of the tributaries of Sneaton Thorpe Beck will be undertaken, as detailed in the Groundwater and Surface Water Monitoring Scheme, to ensure that the discharge is not causing discoloration, erosion of the bank or disturbance of the bed of the watercourse. Records of all monitoring will be kept along with actions that were taken in the event of issues arising.

During Phase 3 all permanent landscaped bunds and temporary spoil bunds will be grass seeded as soon as practicable to ensure that sediment laden surface water runoff is minimised. Erecting silt fences at source around these spoil bunds, in combination with swales and check dams is the main method to prevent siltation getting into the drainage system. Silt fences will be installed to manufacturer's recommendations (such as <u>http://www.geofabrics.co.nz/media/2910/silt-fence-installation.pdf</u>).

The silt fences and check dams will be monitored through regular surveys. If silt builds up and 30% of the available storage is used up, then scraping, dredging or emptying and re-profiling will be undertaken to ensure the full storage volume is maintained.

The silt removal facility and attenuation storage will be monitored through regular surveys. If silt builds up to a depth of 200mm then scraping, dredging or emptying and re-profiling will be undertaken to ensure the full storage volume is maintained.

Throughout the Phase 3 Works, the surface water drainage system will be inspected on a daily basis to ensure that it is in good working order and when necessary all pipework, swales and other drainage elements, such as the oil separators and flow control devices, shall be cleaned out to guarantee unobstructed flow and prevent build-up of sediment. Any extracted sediment will be redistributed thinly over the works area to dry out and become integrated into the landscaping.

Due to the nature of the works, and their phasing, the drainage arrangements will alter during construction and as a result, the Surface Water Management Plan will be a live and flexible document. While the attenuation pond will be sized to take account of storm events, the flexibility of the Plan will also allow rapid response to weather conditions and unexpected events. The timescales and construction methods for this work are summarised below.

2 Surface Water Drainage – Sequence of Works and Construction Methods

The order in which the proposed surface water drainage measures are implemented will have a bearing on the protection of Seaton Thorpe Beck; the proposed surface water drainage design will be constructed, in general, working from the downstream end towards the upstream end. The following sequencing will be undertaken (start date on site of 05/06/17 is assumed).

- (05/06) All existing surface water drainage measures implemented during Phase 3 will be inspected to ensure they are in good order. Any necessary remedials will be undertaken immediately.
- (05/06 to 16/06) The proposed wetland and attenuation pond will be excavated and formed; the slipway into the Seaton Thorpe Beck tributary will not be constructed until all other aspects of the wetland and pond are complete.
- (05/06 to 09/06) Before starting works to the platforms, the existing perimeter ditches will be extended to suit the extended platform profiles; check dams will be installed for de-silting purposes.
- (12/06 to 13/06) Once the platform ditches have been extended, the redundant section of the existing Phase 2 ditch will be abandoned.
- (12/06 to 16/06) The existing attenuation pond will be enlarged to suit the new design profile.
- (19/06 to 23/06) Modifications to utilise the existing carrier drainage system will be made such that the new surface water measures work with infrastructure constructed during Phase 2.
- (19/06 to 23/06) The drainage ditch and temporary attenuation pond located south of the concrete batching plant location will be constructed.
- De-watering of excavations and working areas will be undertaken using submersible pumps with discharge directed into the silt removal facility or a suitable area within the site upstream of this.

The following construction methods will be implemented:

- Excavation of drainage trenches, ponds and swales will be undertaken using an excavator or dozer in accordance with the earthworks method statements.
- Spoil will be transported by dumper and incorporated into the earthworks cut & fill operations.
- Geotextile and geogrid membranes will be rolled out and overlapped / welded in accordance with the manufacturer's instructions.
- Concrete canvas will be placed within drainage ditches, with the canvas being lifted into position by an excavator and laid out by hand.

Appendix D

Micro Drainage Model Outputs

Ove Arup & Partners International Ltd		Page 1
The Arup Campus Blyth Gate		
Solihull B90 8AE		Micro
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Drainage
XP Solutions	Network 2015.1	·
STORM SEV	VER DESIGN by the Modified Rational Method	
<u>D</u>	esign Criteria for Phase 3 Northern	
Pipe Si	zes STANDARD Manhole Sizes STANDARD	
	FEH Rainfall Model	
Return Period (years) 20	-	Height (m) 1.500
	ximum Rainfall (mm/hr) 100 Min Design Depth for Optim	
C (1km) -0.022 Maximum Time o D1 (1km) 0.374	f Concentration (mins) 30 Min Vel for Auto Design Foul Sewage (1/s/ha) 0.000 Min Slope for Optimis	
X P	lumetric Runoff Coeff. 0.750	acton (1.x) 500
	w / Climate Change (%) 0	
	um Backdrop Height (m) 0.200	
	Designed with Level Inverts	
Netw	ork Design Table for Phase 3 Northern	
« ·	- Indicates pipe capacity < flow	
PN Length Fall Slope (m) (m) (1:X)		
	Network Results Table	
PN Rain T.C. US/IL (mm/hr) (mins) (m)	Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (ha) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)	
	©1982-2015 XP Solutions	

Ove Arup & Partners Inte	ernational Ltd											P	age 2
The Arup Campus													
Blyth Gate													L.
Solihull B90 8AE													Micco
Date 13/03/2017 11:17					Desig	gned by	veronika.sto	oyano	/a				Desinance
File Woodsmith Mine Pha	ase 3 Rev A for Pla	anning.m	ndx		1	ked by							Drainage
XP Solutions		0				ork 201	5.1						
			N	Jotwork	Design	Tahla	for Phase 3	Northe	vrn				
					-				<u>;;;;;</u>				
	PN	Length					Base	k	n	HYD	DIA	Auto	
		(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)		SECT	(mm)	Design	
	PH3-N-1.000	29.672	0.050	593.4	0.155	10.00	0.0)	0.020	1.5 \	/ 1000	•	
	PH3-N-1.001	29.672	0.050	593.4	0.000	0.00				1.5 \		ĕ	
	PH3-N-1.002	30.700	0.050	614.0	0.114	0.00	0.0)	0.020	1.5 _	/ 1000	ě	
	PH3-N-1.003	10.836	0.020	541.8	0.000	0.00	0.0)	0.020	1.5 \	/ 1000	ě	
	PH3-N-2.000	39.366	0.500	78.7	0.025	15.00	0.0)	0.117	3 \=	/ 1000	A	
	PH3-N-2.001	38.563	0.500	77.1	0.049	0.00	0.0)	0.117	3 \=	/ 1000	ě	
	PH3-N-2.002	38.563	0.500	77.1	0.000	0.00	0.0)	0.117	3 \=	/ 1000	ē	
	PH3-N-2.003	42.943	0.700	61.3	0.031	0.00	0.0)	0.117	3 \=	/ 1000	0	
	PH3-N-3.000	70.000	1.000	70.0	0.041	15.00	0.0)	0.117	3 \=	/ 1000	•	
					Netw	ork Res	sults Table						
	PN	Rain	T.C.	US/I	LΣI	.Area	Σ Base	Foul	Add Fl	ow Vel	. Cap	Flow	
		(mm/hr)	(mins)) (m)	(ha) I	flow (l/s)	(1/s)	(l/s)	(m/s	;) (l/s) (l/s)	
	PH3-N-1.000	83.88	10.68	3 203.5	00	0.155	0.0	0.0	0	.0 0.7	2 314.	4 35.1	
	PH3-N-1.001	80.36	11.37	7 203.4		0.155	0.0	0.0	0		2 314.		
	PH3-N-1.002	77.02		9 203.4		0.268	0.0	0.0	0			1 55.9	
	PH3-N-1.003	75.98	12.33	3 203.3	50	0.268	0.0	0.0	0	.0 0.7	6 329.	0 55.9	
	PH3-N-2.000	58.62	17.94	4 208.5		0.025	0.0	0.0	0	.0 0.2	2 48.	6 4.0	
	PH3-N-2.001	52.94		9 208.0		0.074	0.0	0.0	0	.0 0.2			
	PH3-N-2.002	48.45		4 207.5		0.074	0.0	0.0		.0 0.2			
	PH3-N-2.003	44.80	26.47	7 207.0	00	0.105	0.0	0.0	0	.0 0.2	5 55.	0 12.8	
	PH3-N-3.000	54.52	19.93	3 208.5	00	0.041	0.0	0.0	0	.0 0.2	4 51.	5 6.1	
					<u></u>	0045	P Solutions						

nternational Ltd													Page 3
													· · · · · · · · · · · · · · · · · · ·
													L
													Micro
7				Desid	aned by	veronika	stovan	ova					- MILIU Designation
	lanning.m	ndx					,						Drainage
	Network 2015.1												
		<u>1</u>	Network	Desigr	n Table i	for Phase	3 Nort	<u>hern</u>					
PN	Length	Fall S	Slope	I.Area	T.E.	Base		k n		HYD	DIA	Auto	
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l	/s) (n	am)		SECT	(mm)	Design	
	E2 700	0 400	101 0	0 0 2 2	0 00		0 0	0 1	17	2	1000	•	
												Ä	
1110 11 0.000	51.000 ·	0.010 0	100.0	0.020	0.00		0.0	0.1	11	5 ()	1000	•	
PH3-N-2.004	38.400	3.270	11.7	0.000	0.00		0.0 0.	600		0	300	0	
PH3-N-1.004	28,500	0.360	79.2	0.085	0.00		0.0	0.0	20 1	.5 \ /	1000	Δ.	
PH3-N-1.005	31.400	0.470	66.8	0.046	0.00							Ä	
												-	
				<u>Netw</u>	ork Res	sults Table	<u>9</u>						
PN	Rain	T.C.	us/1	LΣI	.Area	Σ Base	Fou	1 Add 1	low	Vel	Cap	Flow	
	(mm/hr)	(mins)) (m)	(ha) I	Flow (1/s	s) (1/s	3) (1/	s)	(m/s)	(1/s)	(1/s)	
PH3-N-3.001	46.47	7 25.10	0 207.5	00	0.073	0.	0 0.	. 0	0.0	0.17	37.6	9.2	
PH3-N-3.002	44.10	27.08	8 207.0	91	0.088	0.	0 0.	. 0	0.0	0.17	37.6	10.5	
PH3-N-3.003	42.03	3 29.03	3 206.9	35	0.101	0.	0 0.	. 0	0.0	0.17	37.6	11.5	
PH3-N-3.004	41.08	30.00	206.7	81	0.101	0.	0 0.	. 0	0.0	0.17	37.5	11.5	
PH3-N-3.005	41.08	30.00	206.7	00	0.101	0.	0 0.	. 0	0.0	0.27	57.6	11.5	
PH3-N-3.006	41.08	30.00	206.3	10	0.127	0.	0 0.	0	0.0	0.04	7.7«	14.1	
PH3-N-2.004	41.08	30.00	206.6	00	0.232	0.	0 0.	. 0	0.0	4.61	326.1	25.8	
PH3-N-1.004	41.08	3 30 00	0 203.3	30	0.585	0.	0 0.	0	0.0	1.98	860 8	65.1	
	7 Phase 3 Rev A for P PH3-N-3.001 PH3-N-3.002 PH3-N-3.003 PH3-N-3.004 PH3-N-3.005 PH3-N-3.006 PH3-N-2.004 PH3-N-1.004 PH3-N-1.004 PH3-N-1.005 PH3-N-1.005 PH3-N-3.001 PH3-N-3.001 PH3-N-3.002 PH3-N-3.003 PH3-N-3.004 PH3-N-3.005 PH3-N-3.006	PN Length (m) PH3-N-3.001 53.700 PH3-N-3.002 20.500 PH3-N-3.003 20.200 PH3-N-3.003 20.200 PH3-N-3.003 20.200 PH3-N-3.004 10.700 PH3-N-3.005 21.800 PH3-N-3.006 31.600 PH3-N-1.004 28.500 PH3-N-1.005 31.400 PH3-N-1.005 31.400 PH3-N-3.001 46.47 PH3-N-3.002 44.10 PH3-N-3.003 42.03 PH3-N-3.004 41.08 PH3-N-3.005 41.08	Phase 3 Rev A for Planning.mdx PN Length Fall fill PN Length fall fill fill (m) (m) fill fill fill PN Length fall fill fill fill fill PN Length fall fill fill	7 Phase 3 Rev A for Planning.mdx PN Length Fall Slope 7 (m) (m) (1:x) PH3-N-3.001 53.700 0.409 131.3 PH3-N-3.002 20.500 0.156 131.4 PH3-N-3.003 20.200 0.154 131.2 PH3-N-3.004 10.700 0.081 132.1 PH3-N-3.005 21.800 0.390 55.9 PH3-N-3.006 31.600 0.010 3160.0 PH3-N-2.004 38.400 3.270 11.7 PH3-N-1.004 28.500 0.360 79.2 PH3-N-1.005 31.400 0.470 66.8 PN Rain T.C. US/I (mm/hr) (mins) (m) PH3-N-3.001 46.47 25.10 207.5 PH3-N-3.002 44.10 27.08 207.0 PH3-N-3.003 42.03 29.03 206.9 PH3-N-3.004 41.08 30.00 206.7 PH3-N-3.005 41.08 30.00 206.7	7 Design Check Phase 3 Rev A for Planning.mdx Network Network Network PN Length Fall Slope I.Area (m) (m) (1:X) (ha) PH3-N-3.001 53.700 0.409 131.3 0.032 PH3-N-3.002 20.500 0.156 131.4 0.015 PH3-N-3.002 20.500 0.156 131.4 0.015 PH3-N-3.002 20.200 0.154 131.2 0.013 PH3-N-3.004 10.700 0.081 132.1 0.000 PH3-N-3.005 21.800 0.390 55.9 0.000 PH3-N-3.006 31.600 0.010 3160.0 0.026 PH3-N-1.004 28.500 0.360 79.2 0.085 PH3-N-1.004 28.500 0.360 79.2 0.085 PH3-N-3.001 46.47 25.10 207.500 PH3-N-3.002 44.10 27.08 207.091 PH3-N-3.003 42.03 <td< td=""><td>7 Designed by Checked by Network 201 PN Length Fall Slope I.Area T.E. (m) (m) (lix) (ha) (mins) PH3-N-3.001 53.700 0.409 131.3 0.032 0.00 PH3-N-3.001 53.700 0.409 131.3 0.032 0.00 PH3-N-3.001 53.700 0.409 131.3 0.032 0.00 PH3-N-3.001 53.700 0.409 131.4 0.015 0.00 PH3-N-3.002 20.500 0.156 131.4 0.015 0.00 PH3-N-3.003 20.200 0.154 131.2 0.013 0.00 PH3-N-3.004 10.700 0.081 132.1 0.000 0.00 PH3-N-3.006 31.600 0.010 3160.0 0.026 0.00 PH3-N-1.004 28.500 0.360 79.2 0.085 0.00 PH3-N-1.005 31.400 0.470 66.8 0.046 0.00 PH3-N-3.001</td><td>7 Designed by veronika Checked by Phase 3 Rev A for Planning.mdx Design Table for Phase Checked by Network 2015.1 PN Length Fall Slope I.Area T.E. Base (m) (n) (1:X) (ha) (mins) Flow (1 PH3-N-3.001 53.700 0.409 131.3 0.032 0.00 0.01 0.015 0.00 0.00 PH3-N-3.004 10.700 0.081 132.1 0.000 0.00 PH3-N-3.006 31.600 0.010 3160.0 0.026 0.00 PH3-N-1.004 28.500 0.360 79.2 0.085 0.00 PH3-N-3.001 46.47 25.10 207.500 0.073 0. PH3-N-3.001 46.47 25.10 207.500 0.073 0. PH3-N-3.001 46.47 25.10 207.500 0.073 0. PH3-N-3.001 46.47 25.10 207.500 0.073 0. </td></td<>	7 Designed by Checked by Network 201 PN Length Fall Slope I.Area T.E. (m) (m) (lix) (ha) (mins) PH3-N-3.001 53.700 0.409 131.3 0.032 0.00 PH3-N-3.001 53.700 0.409 131.3 0.032 0.00 PH3-N-3.001 53.700 0.409 131.3 0.032 0.00 PH3-N-3.001 53.700 0.409 131.4 0.015 0.00 PH3-N-3.002 20.500 0.156 131.4 0.015 0.00 PH3-N-3.003 20.200 0.154 131.2 0.013 0.00 PH3-N-3.004 10.700 0.081 132.1 0.000 0.00 PH3-N-3.006 31.600 0.010 3160.0 0.026 0.00 PH3-N-1.004 28.500 0.360 79.2 0.085 0.00 PH3-N-1.005 31.400 0.470 66.8 0.046 0.00 PH3-N-3.001	7 Designed by veronika Checked by Phase 3 Rev A for Planning.mdx Design Table for Phase Checked by Network 2015.1 PN Length Fall Slope I.Area T.E. Base (m) (n) (1:X) (ha) (mins) Flow (1 PH3-N-3.001 53.700 0.409 131.3 0.032 0.00 0.01 0.015 0.00 0.00 PH3-N-3.004 10.700 0.081 132.1 0.000 0.00 PH3-N-3.006 31.600 0.010 3160.0 0.026 0.00 PH3-N-1.004 28.500 0.360 79.2 0.085 0.00 PH3-N-3.001 46.47 25.10 207.500 0.073 0. PH3-N-3.001 46.47 25.10 207.500 0.073 0. PH3-N-3.001 46.47 25.10 207.500 0.073 0. PH3-N-3.001 46.47 25.10 207.500 0.073 0.						

Ove Arup & Partners International Ltd		Page 4
The Arup Campus		
Blyth Gate		L.
Solihull B90 8AE		Micro
Date 13/03/2017 11:17	Designed by veronika.stoyanova	
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Drainage
XP Solutions	Network 2015.1	

Network Design Table for Phase 3 Northern

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)		SECT	(mm)	Design
PH3-N-1.006	23.261	2.000	11.6	0.047	0.00	0.0		0.020	1.5 _/	1000	_
PH3-N-1.007	23.000	0.020	1150.0	0.036	0.00	0.0		0.020	1.5 _/	1000	- Ā
PH3-N-1.008	14.735	0.080	184.2	0.174	0.00	0.0	0.600		00	300	Ä
PH3-N-1.009	14.735	0.015	1000.0	0.000	0.00	0.0		0.020	1.5 _/	1000	ă
PH3-N-1.010	15.880	0.016	1000.0	0.224	0.00	0.0		0.020	1.5 _/	1000	ă
PH3-N-1.011	15.603	0.016	1000.0	0.136	0.00	0.0		0.020	1.5 _/	1000	- Ā
PH3-N-1.012	30.421	0.030	1000.0	0.174	0.00	0.0		0.020	1.5 _/	1000	Ä
PH3-N-1.013	24.500	0.025	1000.0	0.181	0.00	0.0		0.020	1.5 _/	1000	Ä
PH3-N-1.014	18.824	0.090	209.2	0.199	0.00	0.0	0.600		00	300	Ä
PH3-N-1.015	18.824	0.019	1000.0	0.000	0.00	0.0		0.020	1.5 \ /	1000	Ä
PH3-N-1.016	35.017	0.035	1000.0	0.274	0.00	0.0		0.020	1.5 _/	1000	ē

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)		Base (1/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
542 N 1 000	41 00	20.00	000 500	0 (70		0 0	0 0	0.0	5 1 6	0045 0	75 4
PH3-N-1.006	41.08		202.500	0.678		0.0	0.0	0.0		2245.8	75.4
PH3-N-1.007	41.08	30.00	200.500	0.714		0.0	0.0	0.0	0.52	225.9	79.4
PH3-N-1.008	41.08	30.00	200.480	0.887		0.0	0.0	0.0	1.16	163.3	98.7
PH3-N-1.009	41.08	30.00	200.400	0.887		0.0	0.0	0.0	0.56	242.2	98.7
PH3-N-1.010	41.08	30.00	200.385	1.111		0.0	0.0	0.0	0.56	242.2	123.6
PH3-N-1.011	41.08	30.00	200.369	1.247		0.0	0.0	0.0	0.56	242.2	138.8
PH3-N-1.012	41.08	30.00	200.353	1.421		0.0	0.0	0.0	0.56	242.2	158.2
PH3-N-1.013	41.08	30.00	200.323	1.602		0.0	0.0	0.0	0.56	242.2	178.3
PH3-N-1.014	41.08	30.00	200.299	1.801		0.0	0.0	0.0	1.08	153.1«	200.4
PH3-N-1.015	41.08	30.00	200.209	1.801		0.0	0.0	0.0	0.56	242.2	200.4
PH3-N-1.016	41.08	30.00	200.190	2.075		0.0	0.0	0.0	0.56	242.2	230.9
			©	1982-2015	XP S	olution	5				

Ove Arup & Partners International Ltd		Page 5
The Arup Campus		
Blyth Gate		L.
Solihull B90 8AE		Micco
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamaye
XP Solutions	Network 2015.1	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	n	HYD SECT	DIA (mm)	Auto Design
PH3-N-1.017	42.873	0.055	779.5	0.288	0.00	0.0		0.020	1.5 _/	1000	•
PH3-N-4.000 PH3-N-4.001 PH3-N-4.002 PH3-N-4.003 PH3-N-4.004 PH3-N-4.005 PH3-N-4.006 PH3-N-4.007	37.300 20.000 5.500 30.000 30.667	0.150 0.150 0.025 0.100 0.100 0.075	248.7 133.3 220.0 300.0 306.7 391.5	0.025 0.018 0.036 0.027 0.046 0.139 0.127 0.111	10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.020 0.020 0.020 0.020	1.5 _/ 1.5 _/ 1.5 _/ 1.5 _/ 1.5 _/ 1.5 _/ 1.5 _/	1000 1000 1000 1000 1000 1000 1000	4 4 4 4 4
PH3-N-4.008				0.020	0.00	0.0		0.020	· · · · _ /	1000	-

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
PH3-N-1.017	41.08	30.00	200.155	2.363	0.0	0.0	0.0	0.63	274.3	263.0
PH3-N-4.000	86.06	10.29	202.840	0.025	0.0	0.0	0.0	0.89	386.6	5.7
PH3-N-4.001	82.99	10.85	202.800	0.042	0.0	0.0	0.0	1.12	485.7	9.5
PH3-N-4.002	81.85	11.07	202.650	0.078	0.0	0.0	0.0	1.52	663.3	17.3
PH3-N-4.003	81.46	11.15	202.500	0.105	0.0	0.0	0.0	1.19	516.4	23.1
PH3-N-4.004	79.06	11.64	202.475	0.150	0.0	0.0	0.0	1.02	442.2	32.2
PH3-N-4.005	76.76	12.15	202.375	0.289	0.0	0.0	0.0	1.01	437.4	60.1
PH3-N-4.006	74.44	12.70	202.275	0.416	0.0	0.0	0.0	0.89	387.1	84.0
PH3-N-4.007	73.95	12.82	202.200	0.527	0.0	0.0	0.0	0.94	409.4	105.6
PH3-N-4.008	72.11	13.30	202.180	0.547	0.0	0.0	0.0	1.18	512.5	106.9
			©́	1982-2015	XP Solutions	;				

Ove Arup & Partners International Ltd		Page 6
The Arup Campus		
Blyth Gate		4
Solihull B90 8AE		Micro
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamaye
XP Solutions	Network 2015.1	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	n	HYD SECT	DIA (mm)	Auto Design
PH3-N-4.009 PH3-N-4.010 PH3-N-4.011	28.566	0.150	190.4	0.134 0.123 0.104	0.00 0.00 0.00	0.0 0.0 0.0		0.020	1.5 _/	1000 1000 1000	● ●
PH3-N-5.000 PH3-N-5.001 PH3-N-5.002	63.500	1.100	58.2 57.7 46.4	0.199 0.228 0.240	10.00 0.00 0.00		0.600 0.600	0.020	0 0 1.5 _/		● ●
PH3-N-6.000 PH3-N-6.001			64.0 57.7	0.148 0.152	10.00 0.00		0.600 0.600		0	225 225	•

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
PH3-N-4.009	70.47	13.75	202.030	0.681	0.0	0.0	0.0	1.27	553.5	130.0
PH3-N-4.010	69.17	14.12	201.850	0.804	0.0	0.0	0.0	1.28	555.0	150.7
PH3-N-4.011	67.49	14.63	201.700	0.908	0.0	0.0	0.0	0.80	346.2	166.0
PH3-N-5.000	84.23	10.62	208.300	0.199	0.0	0.0	0.0	1.72	68.3	45.3
PH3-N-5.001	81.02	11.23	207.200	0.427	0.0	0.0	0.0	1.72	68.6«	93.7
PH3-N-5.002	79.88	11.47	206.100	0.667	0.0	0.0	0.0	2.34	667.2	144.2
PH3-N-6.000	84.06	10.65	207.500	0.148	0.0	0.0	0.0	1.64	65.1	33.6
PH3-N-6.001	80.87	11.27	206.500	0.300	0.0	0.0	0.0	1.72	68.6	65.6

©1982-2015 XP Solutions

Ove Arup & Partners International Ltd		Page 7
The Arup Campus		
Blyth Gate		L.
Solihull B90 8AE		Micco
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Digitige
XP Solutions	Network 2015.1	

	PN	Length (m)		Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	n	HYD SECT	DIA (mm)	Auto Design
Pl	H3-N-5.003	32.600	1.200	27.2	0.164	0.00	0.0		0.020	1.5 _/	500	•
	H3-N-7.000 H3-N-7.001			64.0 52.8	0.148 0.148	10.00 0.00		0.600 0.600		0 0	225 225	•
Pl	H3-N-5.004	32.582	1.450	22.5	0.168	0.00	0.0		0.020	1.5 _/	500	•
	H3-N-8.000 H3-N-8.001			64.5 49.6	0.153 0.140	10.00 0.00		0.600 0.600			225 225	•
Pl	H3-N-5.005	3.746	0.050	74.9	0.165	0.00	0.0		0.020	1.5 _/	500	0

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
PH3-N-5.003	79.04	11.64	205.400	1.130	0.0	0.0	0.0	3.06	872.2	241.9
PH3-N-7.000	84.06	10.65	206.400	0.148	0.0	0.0	0.0	1.64	65.1	33.6
PH3-N-7.001	81.01	11.24	205.400	0.295	0.0	0.0	0.0	1.80	71.8	64.8
PH3-N-5.004	78.29	11.80	204.200	1.593	0.0	0.0	0.0	3.36	959.0	337.7
PH3-N-8.000	84.02	10.66	205.000	0.153	0.0	0.0	0.0	1.63	64.9	34.7
PH3-N-8.001	81.12	11.21	204.000	0.292	0.0	0.0	0.0	1.86	74.0	64.2
PH3-N-5.005	78.14	11.84	202.750	2.050	0.0	0.0	0.0	1.84	525.2	433.8
			©1	982-2015	XP Solutions	;				

Ove Arup & Partners International	Ltd												Page 8
he Arup Campus													
Blyth Gate													L
Solihull B90 8AE													Micro
Date 13/03/2017 11:17					Desi	aned by	veronika.st	ovanova	3				Desipado
File Woodsmith Mine Phase 3 Rev	A for Pla	annina.m	ndx			ked by		5					Diamaye
XP Solutions		- 0	-			ork 201	5.1						
			<u>1</u>	Networl	k Desigr	<u>Table</u>	for Phase 3	Norther	<u>n</u>				
	PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Auto	
		(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s) (mm)		SECT	(mm)	Design	
PH3-	N-9.000	40.323	0.200	201.6	0.149	10.00	0.	0 0.600)	0	225	•	
	N-9.001				0.129	0.00		0 0.600		0		ă	
PH3-	N-9.002	22.885	0.100	228.9	0.080	0.00	0.	0 0.600)	0	225	ŏ	
PH3-	N-9.003	32.208	0.125	257.7	0.039	0.00	0.	0 0.600)	0	225	ē	
PH3-N	1-10.000	32,000	0.900	35.6	0.034	5.00	0.	0 0.600)	0	225	۵	
	1-10.001			31.0	0.032	0.00		0 0.600		0		Ä	
	1-10.002			21.5	0.089	0.00		0 0.600		0	225	Ă	
PH3-N	1-10.003	30.000	0.100	300.0	0.000	0.00	0.	0	0.117 1	.5 \ /	1000	Ă	
PH3-N	1-10.004	30.000	0.100	300.0	0.000	0.00	0.	0	0.117 1			ě	
					Netw	ork Res	sults Table						
	PN	Rain	T.C.	us/	ΊL Σ	I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
		(mm/hr)	(mins) (n	1)	(ha)	Flow (l/s)	(1/s)	(1/s)	(m/s)	(l/s)	(1/s)	
	-N-9.000			3 203.		0.149	0.0	0.0	0.0			5 33.6	
	-N-9.001			8 203.		0.278	0.0	0.0	0.0		36.4«		
	-N-9.002		L 11.8 2 12.4			0.358 0.397	0.0	0.0	0.0			<pre> 75.8 81.0</pre>	
PH3-	-N-9.003	10.32	12.4	0 202.	020	0.391	0.0	0.0	0.0	0.01	32 . 2 «	01.0	
PH3-N	J-10.000	100.00	5.2	4 207.	250	0.034	0.0	0.0	0.0	2.20	87.5	9.2	
PH3-1	J-10.001	100.00	5.4	6 206.	350	0.065	0.0	0.0	0.0	2.36	93.8	17.7	
PH3-N	J-10.002	100.00	5.6	3 205.	350	0.154	0.0	0.0	0.0	2.84	112.7	41.7	
PH3-N	J-10.003	98.17	7 8.5	1 204.	000	0.154	0.0	0.0	0.0	0.17	75.6	5 41.7	
1110 1													

Ove Arup & Partners Intern	ational Ltd												Page 9
The Arup Campus													
Blyth Gate													L.
Solihull B90 8AE													Micro
Date 13/03/2017 11:17					Desiar	ed by v	veronika.sto	vanova	а				
File Woodsmith Mine Phase	3 Rev A for Plar	nina md	x		Check	•	0.010101010	<i></i>					Drainac
XP Solutions		ining.ind				rk 2015	.1						
			<u>Ne</u>	etwork I	Design ⁻	Table fo	r Phase 3 I	Norther	<u>n</u>				
	PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Auto	
		(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/:	s) (mm)	SECT	(mm) D	Design	
								_				_	
	PH3-N-11.000			35.7	0.003	15.00		.0	0.117			•	
	PH3-N-11.001			30.6	0.008	0.00		.0	0.117			•	
	PH3-N-11.002			60.9	0.010	0.00		.0	0.117			•	
	PH3-N-11.003				0.005	0.00		.0	0.117			•	
	PH3-N-11.004				0.011	0.00		.0	0.117			•	
	PH3-N-11.005			76.7	0.014	0.00		.0	0.117			•	
	PH3-N-11.006			40.9	0.009	0.00		.0	0.117			•	
	PH3-N-11.007	4.200	0.138	30.4	0.003	0.00	0	.0	0.117	5 \=/	1000	0	
	PH3-N-12.000	41.200	0.200	206.0	0.013	15.00	0	.0	0.117	3 \=/	1000	0	
					<u>Netwo</u>	rk Resu	ilts Table						
	PN	Rain	T.C.	us/II	ί ΣΙ.	Area	Σ Base	Foul	Add Flow	7 Vel	Cap	Flow	
		(mm/hr)	(mins)	(m)	(h	a) F	low (l/s)	(l/s)	(1/s)	(m/s)	(1/s)) (1/s)	
	PH3-N-11.000	63.05	16 15	208.30	0	.003	0.0	0.0	0.0	0.3	3 72.2	1 0.6	
	PH3-N-11.001	60.28		200.00		.012	0.0	0.0	0.0				
	PH3-N-11.002	56.69		206.90		.022	0.0	0.0	0.0				
	PH3-N-11.003	53.30		206.50		.027	0.0	0.0	0.0				
	PH3-N-11.004	49.42		206.40		.038	0.0	0.0	0.0				
	PH3-N-11.005	47.04		206.30		.052	0.0	0.0	0.0				
	PH3-N-11.006	46.02		206.00		.061	0.0	0.0	0.0				
	PH3-N-11.007	45.78	25.65	205.63	38 0	.064	0.0	0.0	0.0	0.3	5 78.2	1 7.9	
	PH3-N-12.000	54.43	19.97	208.30	0 0	.013	0.0	0.0	0.0) 0.14	1 30.0	0 1.9	

Ove Arup & Partners International Ltd											
The Arup Campus											
Blyth Gate											
Solihull B90 8AE											
Date 13/03/2017 11:17				Desian	ed by v	eronika.sto	ovanov	а			
File Woodsmith Mine Phase 3 Rev A for Plan	nnina md	lx	I	Check			, ,	-			
(P Solutions	g				rk 2015.	1					
		<u>Ne</u>	etwork D	esign 7	Table fo	r Phase 3	Northe	<u>rn</u>			
PN	Length	Fall	Slope 1	.Area	T.E.	Base	k	n	HYD	DIA	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/	s) (mm	ı)	SECT	(mm) 1	Design
PH3-N-12.001	20 400	0 000	38.0	0.016	0.00	0	.0	0.117	2	1000	•
PH3-N-12.001 PH3-N-12.002				0.010	0.00		.0	0.117			⊕ ⊕
PH3-N-12.003				0.008	0.00		.0	0.117			Ä
PH3-N-11.008	21.500	0.200	107.5	0.005	0.00	0	.0	0.117			0
PH3-N-11.009				0.008	0.00		.0	0.117			0
PH3-N-11.010				0.026	0.00		.0	0.117			0
PH3-N-11.011	13.300	0.100	133.0	0.015	0.00	0	.0	0.117	3 \=/	1000	0
PH3-N-13.000	17.700	0.050	354.0	0.006	15.00	0	.0	0.117	3 \=/	1000	•
PH3-N-13.001	30.600	0.450	68.0	0.005	0.00	0	.0	0.117	3 \=/	1000	ă
				Notwo	rk Docu	lts Table					
				INCLWO	K Resu						
PN	Rain	T.C.		ΣΙ.		Σ Base		Add Flo		-	
	(mm/hr)	(mins)	(m)	(h	a) F	low (l/s)	(l/s)	(l/s)	(m/s) (l/s) (l/s)
PH3-N-12.001	51.64	21.55	208.10	0 0	.029	0.0	0.0	0.	0.3	2 69.	9 4.0
PH3-N-12.002	50.36	22.35	207.30	0 0	.040	0.0	0.0	0.	0.4	1 89.	7 5.4
PH3-N-12.003	49.86	22.67	206.40	0 0	.048	0.0	0.0	0.	0.5	7 123.	3 6.5
PH3-N-11.008	43.60	27.53	205.50	0 0	.117	0.0	0.0	0.	0.1	9 41.	6 13.8
PH3-N-11.009	41.95		205.30		.125	0.0	0.0	0.			
PH3-N-11.010	41.08	30.00	204.50	0 0	.150	0.0	0.0	0.	0.1	6 35.	2 16.7
PH3-N-11.011	41.08	30.00	204.30	0 0	.165	0.0	0.0	0.	0.1	7 37.	4 18.4
PH3-N-13.000	58.94	17 00	206.50	0 0	.006	0.0	0.0	0.	0.1	1 22.	9 0.9
		17.00	2.00.00	v U		U . U	0.0	υ.	J U.I	± 22.	J U.J

Ove Arup & Partners International Ltd		Page 11
The Arup Campus		
Blyth Gate		4
Solihull B90 8AE		Micro
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamaye
XP Solutions	Network 2015.1	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	n	HYD SECT	DIA (mm)	Auto Design
PH3-N-13.002 PH3-N-13.003 PH3-N-13.004	30.800	0.900	148.5 34.2 22.1	0.024 0.013 0.012	0.00 0.00 0.00	0.0 0.0 0.0		0.117 0.117 0.117	3 \=/ 3 \=/ 3 \=/		⊕ ⊕
PH3-N-11.012	20.300	0.400	50.8	0.000	0.00	0.0	0.600		0	150	0
PH3-N-10.005 PH3-N-10.006 PH3-N-10.007 PH3-N-10.008 PH3-N-10.009	30.500 29.500 24.500	0.150 0.150 0.100	203.3 196.7	0.127 0.052 0.048 0.049 0.045	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0		0.117	1.5 _/ 1.5 _/ 1.5 _/	1000 1000 1000 1000 1000	8 8 8 8

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
PH3-N-13.002	49.42	22.97	206.000	0.034	0.0	0.0	0.0	0.16	35.4	4.6
PH3-N-13.003	47.28	24.48	205.800	0.047	0.0	0.0	0.0	0.34	73.7	6.0
PH3-N-13.004	46.37	25.18	204.900	0.059	0.0	0.0	0.0	0.42	91.6	7.4
PH3-N-11.012	41.08	30.00	204.400	0.224	0.0	0.0	0.0	1.42	25.0	25.0
PH3-N-10.005	41.08	30.00	203.800	0.505	0.0	0.0	0.0	0.21	91.1	56.2
PH3-N-10.006	41.08	30.00	203.650	0.557	0.0	0.0	0.0	0.21	91.8	62.0
PH3-N-10.007	41.08	30.00	203.500	0.605	0.0	0.0	0.0	0.21	93.4	67.3
PH3-N-10.008	41.08	30.00	203.350	0.654	0.0	0.0	0.0	0.19	83.6	72.7
PH3-N-10.009	41.08	30.00	203.250	0.698	0.0	0.0	0.0	0.17	75.6«	77.7
			©1	982-2015	XP Solutions					

Ove Arup & Partners Interna	tional Ltd												Page 12
he Arup Campus													5
Blyth Gate													Ly
Solihull B90 8AE													Micro
Date 13/03/2017 11:17					Desi	gned by	veronika.sto	oyanova	a				Drainage
File Woodsmith Mine Phase	3 Rev A for Pla	anning.m	ıdx		Chec	ked by							Diamage
XP Solutions					Netw	ork 201	5.1						
			ļ	Networ	k Desigr	n Table	for Phase 3	Norther	n				
	PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Auto	
		(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)		SECT	(mm)	Design	
	PH3-N-10.010	27.000	0.100	270.0	0.050	0.00	0.0)	0.117 1	.5 \ /	1000	A	
	PH3-N-10.011	31.116	0.150	207.4	0.042	0.00			0.117 1			Ă	
	PH3-N-10.012	42.297	0.150	282.0	0.052	0.00	0.0)	0.117 1			ě	
	PH3-N-10.013	17.594	0.050	351.9	0.093	0.00	0.0	0.600)	00	300	ď	
	PH3-N-5.006	25.545	0.400	63.9	0.016	0.00	0.0)	0.020 1	.5 \ /	1000	A	
	PH3-N-5.007				0.116	0.00			0.020 1			ā	
	PH3-N-5.008	16.827	0.200	84.1	0.094	0.00	0.0)	0.020 1			ĕ	
	PH3-N-14.000	47.859	1.100	43.5	0.042	10.00	0.0	0.600)	0	225	۵	
					<u>Netw</u>	ork Res	sults Table						
	PN	Rain	T.C.	US/	ΊL ΣΙ	I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
		(mm/hr)	(mins	s) (n	ı)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(1/s)	
	PH3-N-10.010	41.08	30.0	0 203.	150	0.748	0.0	0.0	0.0	0.18	79.7«	83.3	
	PH3-N-10.011	41.08	30.0	0 203.	050	0.790	0.0	0.0	0.0	0.21	90.9	87.9	
	PH3-N-10.012	41.08	30.0	0 202.	900	0.842	0.0	0.0	0.0	0.18	78.0«	93.7	
	PH3-N-10.013	41.08	30.0	0 202.	750	0.935	0.0	0.0	0.0	0.83	117.7	104.1	
	PH3-N-5.006	41.08	30.0	0 202.	700	3.399	0.0	0.0	0.0	2.20	958.4	433.8	
	PH3-N-5.007			0 202.		3.514	0.0	0.0	0.0			433.8	
	PH3-N-5.008	41.08		0 202.		3.608	0.0	0.0				433.8	
	PH3-N-14.000	85.45	5 10.4	0 206.	100	0.042	0.0	0.0	0.0	1.99	79.1	9.7	

Ove Arup & Partners Interna	ational Ltd													Page 13
The Arup Campus Blyth Gate Solihull B90 8AE														L.
Date 13/03/2017 11:17]	Designed	bv verc	onika.st	ovano	va					- MICIO
File Woodsmith Mine Phase	3 Rev A for Pla	anning.mo	dx		Checked I			- ,						Drainage
XP Solutions		•		1	Vetwork 2	015.1								
			<u>Ne</u>	etwork De	esign Tab	le for P	hase 3	Northe	<u>ern</u>					
	PN	Leng	th Fall	Slope	I.Area	T.E.	Bas	se	k	n HYI	D DIA	Auto	0	
		(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SEC	T (mm) Desig	gn	
	PH3-N-15.	000 70.1	13 1.10	0 63.7	0.146	10.00		0.0	0.600		o 22	5 🔒		
	PH3-N-14.	001 32.0	50 0.80	0 40.1	0.182	0.00		0.0	0.600		o 22	5 🤒		
	PH3-N-16.	000 69.9	85 1.20	0 58.3	0.098	10.00		0.0	0.600		o 22	5 🔒		
	PH3-N-14.	002 31.7	77 1.00	0 31.8	0.149	0.00		0.0	0.600		o 22	5 🔒		
	PH3-N-17.	000 69.9	85 1.00	0 70.0	0.096	10.00		0.0	0.600		o 22	5 🔒		
	PH3-N-14.	003 24.7	81 1.40	0 17.7	0.152	0.00		0.0	0.600		o 22	5 🔒		
				<u> </u>	Network F	Results	<u>Table</u>							
	PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)		Base (l/s)		Add E (1/			Cap (1/s)	Flow (l/s)	
	PH3-N-15.000	83.73	10.71	206.100	0.14	5	0.0	0.0		0.0	1.64	65.2	33.0	
	PH3-N-14.001	82.36	10.97	205.000	0.37)	0.0	0.0		0.0	2.07	82.4«	82.5	
	PH3-N-16.000	83.90	10.68	205.400	0.09	3	0.0	0.0		0.0	1.72	68.2	22.3	
	PH3-N-14.002	81.20	11.20	204.200	0.61	7	0.0	0.0		0.0	2.33	92.6«	135.6	
	PH3-N-17.000	83.55	10.75	204.200	0.09	5	0.0	0.0		0.0	1.57	62.2	21.8	
	PH3-N-14.003	80.55	11.33	203.200	0.86	5	0.0	0.0		0.0	3.13	124.3«	188.7	

Ove Arup & Partners Inter	national Ltd												Page 14
The Arup Campus													
Blyth Gate													L
Solihull B90 8AE													Micro
Date 13/03/2017 11:17					Des	ianed by	veronika.st	ovanov	/a				MILIU
File Woodsmith Mine Pha	se 3 Rev A for Pl	anning r	ndx			cked by			-				Drainago
XP Solutions		annig.i	indix.			vork 201							
				Networ	<u>k Desig</u>	n Table	for Phase 3	Northe	<u>ern</u>				
	PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Auto	
		(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s) (mm)		SECT	(mm)	Design	
	PH3-N-5.009	7.136	0.200	35.7	0.055	0.00	0.	C	0.020	1.5 _/	1000	0	
	PH3-N-4.012	14.238	0.140	101.7	0.106	0.00	0.	0.600	C	00	300	•	
	PH3-N-4.013			75.5	0.000	0.00				1.5 \ /		ĕ	
	PH3-N-4.014			31.8	0.060	0.00				1.5 \ /			
	PH3-N-4.015			45.9	0.040	0.00				1.5 \ /		ĕ	
	PH3-N-4.016				0.061	0.00				1.5 _/		.	
	PH3-N-1.018	15 /21	0 150	102 0	0.551	0.00	0	0.600	ſ		375	•	
	PH3-N-1.018 PH3-N-1.019					0.00) 0.600) 0.600		0			
	1115 1 1.015	24.112	0.200	50.4	0.000	0.00	0.	0.000	5	0	575	•	
					Net	work Res	<u>sults Table</u>						
	PN	Rain	т.c.	us/	IL EI	.Area	Σ Base	Foul	Add Flow	vel	Cap	Flow	
		(mm/hr)	(mins) (m) (ha) E	[low (l/s)	(l/s)	(1/s)	(m/s)	(l/s)	(1/s)	
	PH3-N-5.009	41.08	30.0	0 201.	800	4.528	0.0	0.0	0.0	2.95	1282.2	2 503.9	
	PH3-N-4.012	41.08	30.0	0 201.	600	5.542	0.0	0.0	0.0	1.56	220.44	616.7	
	PH3-N-4.013	41.08		0 201.		5.542	0.0	0.0	0.0			616.7	
	PH3-N-4.014	41.08		0 201.		5.602	0.0	0.0		3.12			
	PH3-N-4.014 PH3-N-4.015	41.08		0 201.		5.642	0.0	0.0	0.0			627.7	
	PH3-N-4.015 PH3-N-4.016	41.08		0 200.		5.703	0.0	0.0	0.0			634.5	
	1112 10 1.010	11.00	50.0	200.	100	5.105	0.0	0.0	0.0	2.07	0.00.0	,	
	PH3-N-1.018	41.08	30.0	0 200.	100	8.617	0.0	0.0	0.0	1.79	197.3«	958.8	
	PH3-N-1.019		30.0			8.617	0.0	0.0	0.0	1.85			

Ove Arup & Partners International Ltd		Page 15
The Arup Campus		
Blyth Gate		4
Solihull B90 8AE		Micro
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamaye
XP Solutions	Network 2015.1	

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)		SECT	(mm)	Design
PH3-N-1.020	29.107	0.029	1000.0	0.000	0.00	0.0	0.600		00	600	A
PH3-N-1.021	50.872	1.272	40.0	0.000	0.00	0.0	0.600		0	525	ē
PH3-N-1.022	11.472	0.299	38.4	0.000	0.00	0.0	0.600		0	525	ē
PH3-N-18.000	29.027	0.500	58.1	0.024	5.00	0.0		0.020	1.5 _/	1000	•
PH3-N-18.001	27.000	0.600	45.0	0.036	0.00	0.0		0.020	1.5 _/	1000	8
PH3-N-18.002	21.509	0.300	71.7	0.100	0.00	0.0	0.600		00	300	8
PH3-N-18.003	19.462	0.150	129.7	0.089	0.00	0.0		0.020	1.5 _/	1000	ē
PH3-N-18.004	18.069	0.036	500.0	0.120	0.00	0.0		0.020	1.5 _/	1000	ē
PH3-N-18.005	20.791	0.042	500.0	0.120	0.00	0.0		0.020	1.5 _/	1000	ē
PH3-N-18.006	30.425	0.061	500.0	0.143	0.00	0.0		0.020	1.5 _/	1000	ē

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
PH3-N-1.020	41.08	30.00	199.375	8.617	0.0	0.0	0.0	0.76	430.7«	958.8
PH3-N-1.021	41.08	30.00	199.571	8.617	0.0	0.0	0.0	3.55	768.3«	958.8
PH3-N-1.022	41.08	30.00	198.299	8.617	0.0	0.0	0.0	3.62	784.6«	958.8
PH3-N-18.000	100.00	5.21	200.900	0.024	0.0	0.0	0.0	2.31	1005.2	6.6
PH3-N-18.001	100.00	5.38	200.400	0.061	0.0	0.0	0.0	2.62	1141.7	16.4
PH3-N-18.002	100.00	5.57	199.800	0.161	0.0	0.0	0.0	1.86	262.8	43.6
PH3-N-18.003	100.00	5.78	199.500	0.250	0.0	0.0	0.0	1.55	672.4	67.6
PH3-N-18.004	100.00	6.17	199.350	0.370	0.0	0.0	0.0	0.79	342.5	100.2
PH3-N-18.005	100.00	6.61	199.314	0.490	0.0	0.0	0.0	0.79	342.5	132.6
PH3-N-18.006	100.00	7.25	199.272	0.633	0.0	0.0	0.0	0.79	342.5	171.3
			©1	982-2015	XP Solutions	;				

Ove Arup & Partners International Ltd		Page 16
The Arup Campus		
Blyth Gate		4
Solihull B90 8AE		Micro
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamaye
XP Solutions	Network 2015.1	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/	k s) (mm)	n	HYD SECT	DIA (mm)	Auto Design
	• •	• •									2
PH3-N-18.007	39.704	0.099	401.1	0.288	0.00	0	.0	0.020	1.5 _/	1000	<u> </u>
PH3-N-18.008	17.212	0.043	400.3	0.397	0.00	0	.0	0.020	1.5 _/	1000	ē
PH3-N-19.000	43.148	0.400	107.9	0.034	5.00	0	.0	0.020	1.5 _/	1000	•
PH3-N-19.001	30.872	0.400	77.2	0.096	0.00	0	.0	0.020	1.5 _/	1000	<u> </u>
PH3-N-19.002	15.921	0.200	79.6	0.124	0.00	0	.0	0.020	1.5 \ /	1000	Ā
PH3-N-19.003	21.935	0.500	43.9	0.070	0.00	0	.0	0.020	1.5 \ /	1000	Ā
PH3-N-19.004	30.913	0.600	51.5	0.116	0.00	0	.0	0.020	1.5 _/	1000	Ă
PH3-N-19.005	35.026	0.800	43.8	0.163	0.00	0	.0	0.020	1.5 \ /	1000	Ă
PH3-N-19.006	30.755	0.300	102.5	0.189	0.00	0	.0	0.020	1.5 \ /	1000	Ā
PH3-N-19.007	33.746	0.300	112.5	0.227	0.00	0	.0	0.020	1.5 _/	1000	ĕ

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
PH3-N-18.007	100.00	8.00	199.212	0.921	0.0	0.0	0.0	0.88	382.5	249.3
PH3-N-18.008	99.64	8.33	199.113	1.317	0.0	0.0	0.0	0.88	382.8	355.5
PH3-N-19.000	100.00	5.42	203.000	0.034	0.0	0.0	0.0	1.70	737.4	9.1
PH3-N-19.001	100.00	5.68	202.600	0.130	0.0	0.0	0.0	2.00	871.8	35.1
PH3-N-19.002	100.00	5.82	202.200	0.253	0.0	0.0	0.0	1.97	858.4	68.6
PH3-N-19.003	100.00	5.95	202.000	0.324	0.0	0.0	0.0	2.66	1156.4	87.7
PH3-N-19.004	100.00	6.16	201.500	0.440	0.0	0.0	0.0	2.45	1067.0	119.1
PH3-N-19.005	100.00	6.38	200.900	0.603	0.0	0.0	0.0	2.66	1157.5	163.4
PH3-N-19.006	100.00	6.68	200.100	0.792	0.0	0.0	0.0	1.74	756.4	214.4
PH3-N-19.007	100.00	7.02	199.800	1.019	0.0	0.0	0.0	1.66	722.1	276.0
			©1	982-2015	XP Solutions	6				

Ove Arup & Partners International Ltd		Page 17
The Arup Campus		
Blyth Gate		L.
Solihull B90 8AE		Micro
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Drainaye
XP Solutions	Network 2015.1	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	n	HYD SECT	DIA (mm)	Auto Design
PH3-N-19.008 PH3-N-19.009			149.4 713.9	0.251	0.00	0.0		0.020		1000 1000	•
PH3-N-19.010	17.152	0.180	95.3	0.394	0.00	0.0		0.020		1000	ĕ
PH3-N-18.009	8.010	0.075	106.8	0.385	0.00	0.0	0.600		0	375	0
PH3-N-18.010	17.891	0.018	993.9	0.000	0.00	0.0	0.600		00	700	8
PH3-N-18.011	40.602	0.203	200.0	0.000	0.00	0.0	0.600		0	375	<u> </u>
PH3-N-18.012	40.602	0.203	200.0	0.000	0.00	0.0	0.600		0	375	Ā
PH3-N-18.013	35.305	0.177	199.5	0.000	0.00	0.0	0.600		0	375	Ä
PH3-N-18.014	42.000	0.210	200.0	0.000	0.00	0.0	0.600		0	375	Ä
PH3-N-18.015	36.000	0.184	195.7	0.000	0.00	0.0	0.600		0	375	ĕ

	PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
PH3-	N-19.008	100.00	7.36	199.500	1.270	0.0	0.0	0.0	1.44	626.6	344.0
PH3-	N-19.009	100.00	8.26	199.300	1.591	0.0	0.0	0.0	0.66	286.7«	430.9
PH3-	N-19.010	98.87	8.42	199.250	1.985	0.0	0.0	0.0	1.80	784.6	531.5
PH3-	N-18.009	98.26	8.50	199.070	3.687	0.0	0.0	0.0	1.75	193.6«	981.2
PH3-	N-18.010	95.52	8.85	198.670	3.687	0.0	0.0	0.0	0.84	648.1«	981.2
PH3-	N-18.011	91.76	9.38	198.977	3.687	0.0	0.0	0.0	1.28	141.1«	981.2
PH3-	N-18.012	88.34	9.91	198.774	3.687	0.0	0.0	0.0	1.28	141.1«	981.2
PH3-	N-18.013	85.61	10.37	198.571	3.687	0.0	0.0	0.0	1.28	141.3«	981.2
PH3-	N-18.014	82.62	10.92	198.394	3.687	0.0	0.0	0.0	1.28	141.1«	981.2
PH3-	N-18.015	80.28	11.38	198.184	3.687	0.0	0.0	0.0	1.29	142.7«	981.2
				©1	982-2015	XP Solutions	6				

Ove Arup & Partners International Ltd													Page 18
he Arup Campus													5
Blyth Gate													L.
Solihull B90 8AE													Micro
Date 13/03/2017 11:17				Designe	ed by v	eronika.s	stoya	nova					Desinance
File Woodsmith Mine Phase 3 Rev A fo	Planning.	mdx		Checke	-								Drainage
XP Solutions	0			Networl		.1							
			Network	Design T	able fo	r Phase 3	3 Nor	thern					
PN	Lengt	th Fall	Slope	I.Area	T.E.	Base	2	k	n	HYD	DIA	Auto	
	(m)	(m)	(1:X)	(ha) (mins)	Flow (1	./s)	(mm)		SECT	(mm) D	esign	
											505		
	023 53.6			0.000	0.00			0.600		0	525 525		
	024 22.34			0.000	0.00			0.600		0	525 525		
	025 00.80			0.000	0.00			0.600		0	525	•	
	020 29.9			0.000	0.00			0.600		0	525	A	
	028 55.8			0.000	0.00			0.600		0	525		
	020 33.0			0.000	0.00		0.0	0.000	0.020		-11		
	030 31.1			0.000	0.00		0.0		0.020	\w/	-11	-	
	031 30.53			0.000	0.00		0.0		0.020	\w/	-11		
	032 22.56			0.093	0.00			0.600		0	450	ŏ	
				Notwork		lta Tabla						-	
				Networl	<u> Resu</u>	Its Table							
PN	Rain	T.C.	US/IL	Σ I.Are		Base			Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow	w (l/s)	(1/s)) (1	/s)	(m/s)	(1/s)	(1/s)	
PH3-N-1.02	3 41.08	30.00	197.850	12.30	4	0.0	0.0	0	0.0	2.24	485.0	≪ 1369.0	
PH3-N-1.02			197.256			0.0	0.0		0.0	2.24		« 1369.0	
PH3-N-1.02	5 41.08		197.033			0.0	0.0	0	0.0	2.73	590.6	<mark>«</mark> 1369.0	
PH3-N-1.02	5 41.08	30.00	196.097	12.30	4	0.0	0.0	0	0.0	7.46	1615.	3 1369.0	
PH3-N-1.02	41.08	30.00	192.800	12.30	4	0.0	0.0	0	0.0	3.70	801.4	<mark>«</mark> 1369.0	
PH3-N-1.02	41.08	30.00	191.400	12.30	4	0.0	0.0	0	0.0	2.96	639.8	<mark>«</mark> 1369.0	
PH3-N-1.02	9 41.08	30.00	190.430	12.30	4	0.0	0.0	0	0.0	1.66	6632.	0 1369.0	
PH3-N-1.03			190.283			0.0	0.0		0.0	1.37		4 1369.0	
1115 N 1.05				10 00		0 0	~ ~	0	0.0	1.15	1505	8 1369.0	
PH3-N-1.03 PH3-N-1.03			190.212			0.0	0.0					« 1379.4	

Ove Arup & Partners International Ltd		Page 19
The Arup Campus		
Blyth Gate		4
Solihull B90 8AE		Micco
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Drainago
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Drainage
XP Solutions	Network 2015.1	·

PN	Length		-	I.Area			se	k	n	HYD	DIA	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	FLOW	(1/s)	(mm)		SECT	(mm)	Design
PH3-N-1.033	65.295	3.328	19.6	0.000	0.00		0.0	0.600		0	450	•
PH3-N-20.000	35.517	2.000	17.8	0.231	15.00		0.0		0.117	3 \=/	1000	•
PH3-N-20.001	39.664	2.700	14.7	0.056	0.00		0.0		0.117	3 \=/	1000	8
PH3-N-20.002	40.852	1.800	22.7	0.174	0.00		0.0		0.117	3 \=/	1000	٨
PH3-N-21.000	28.000	0.280	100.0	0.073	15.00		0.0		0.117	3 \=/	1000	<u>A</u>
PH3-N-21.001	39.000	0.390	100.0	0.112	0.00		0.0		0.117	3 \=/	1000	ă
PH3-N-21.002	23.500	0.235	100.0	0.159	0.00		0.0		0.117	3 \=/	1000	ē
PH3-N-21.003	51.424	0.398	129.4	0.000	0.00		0.0	0.600		0	300	ē
PH3-N-21.004	51.424	0.398	129.2	0.000	0.00		0.0	0.600		0	300	ð

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
PH3-N-1.033	41.08	30.00	187.328	12.397	0.0	0.0	0.0	4.61	732.6«	1379.4
PH3-N-20.000	62.75	16.26	192.500	0.231	0.0	0.0	0.0	0.47	102.3	39.3
PH3-N-20.001	59.55	17.54	190.500	0.287	0.0	0.0	0.0	0.52	112.4	46.3
PH3-N-20.002	55.98	19.17	187.800	0.461	0.0	0.0	0.0	0.42	90.5	69.9
PH3-N-21.000	59.98	17.36	188.500	0.073	0.0	0.0	0.0	0.20	43.1	11.9
PH3-N-21.001	53.21	20.64	188.220	0.185	0.0	0.0	0.0	0.20	43.1	26.7
PH3-N-21.002	49.95	22.61	187.830	0.344	0.0	0.0	0.0	0.20	43.1«	46.5
PH3-N-21.003	49.03	23.23	187.595	0.344	0.0	0.0	0.0	1.38	97.6	46.5
PH3-N-21.004	48.14	23.85	187.198	0.344	0.0	0.0	0.0	1.38	97.7	46.5
			©	1982-2015	XP Solution	S				

Ove Arup & Partners International Ltd		Page 20
The Arup Campus		
Blyth Gate		4
Solihull B90 8AE		Micco
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Drainage
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamaye
XP Solutions	Network 2015.1	·

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s	k) (mm)	n	HYD SECT	DIA (mm)	Auto Design
PH3-N-21.005	29.973	0.800	37.5	0.404	0.00	0.	0	0.117	3 \=/	1000	•
PH3-N-20.003 PH3-N-20.004 PH3-N-20.005	36.783 35.000 131.800	0.300	116.7	1.272 0.171 0.000	0.00 0.00 0.00	0.	0 0.600 0 0.600 0 0.600		0 0 0	375	● ● ●
PH3-N-1.034 PH3-N-1.035 PH3-N-1.036 PH3-N-1.037	60.624 63.784 45.998 33.612	2.450 4.850	22.5 26.0 9.5 9.6	1.411 0.397 0.273 0.260	0.00 0.00 0.00 0.00	0.	0 0.600 0 0.600 0 0.600 0		0 0 0 \~/		⊕ ⊕

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
PH3-N-21.005	46.10	25.40	186.800	0.748	0.0	0.0	0.0	0.32	70.4«	93.4
PH3-N-20.003	45.91	25.55	186.300	2.481	0.0	0.0	0.0	4.02	444.4	308.5
PH3-N-20.004	45.48	25.90	185.400	2.652	0.0	0.0	0.0	1.68	185.2«	326.6
PH3-N-20.005	43.71	27.43	185.108	2.652	0.0	0.0	0.0	1.44	101.5«	326.6
PH3-N-1.034	41.08	30.00	184.000	16.461	0.0	0.0	0.0	4.31	684.7«	1831.5
PH3-N-1.035	41.08	30.00	181.300	16.858	0.0	0.0	0.0	4.00	635.7«	1875.7
PH3-N-1.036	41.08	30.00	178.850	17.130	0.0	0.0	0.0	6.63	1054.6«	1906.0
PH3-N-1.037	41.08	30.00	174.500	17.390	0.0	0.0	0.0	0.42	792.9«	1934.9

©1982-2015 XP Solutions

Ove Arup & Partners International Ltd								Page 21
The Arup Campus								
Blyth Gate								Ly m
Solihull B90 8AE								Micro
Date 13/03/2017 11:17		-		/ veron	Drainage			
File Woodsmith Mine Phase 3 Rev A for Planning.mdx			ked by		Brainiage			
XP Solutions		Netwo	ork 20	15.1				
Co	onduit	t Secti	ions fo	r Phase	3 North	<u>nern</u>		
NOTE, Dismotore los	aa th		rofo		ation	aumhoro	of bride	Aroul i a
NOTE: Diameters les conduits. These								
culvert, \/ open of								
Section number	ers <	< 0 a	re tak	en fro	n user	conduit	table	
Section Condu	uit N	Major	Minor	Side	Corner	4*Hyd	XSect	:
Number Typ						Radius		
		(mm)	(mm)	(Deg)	(mm)	(m)	(m²)	
-11	\w/	9000	500			1.732	4.000)
-13	\~/ 1	10000	300			0.747	1.880)
	C	019 <mark>82</mark> -	-2015	XP Solu	itions			

Ove Arup & Partners International Ltd		Page 22
The Arup Campus		
Blyth Gate		~~
Solihull B90 8AE		Micro
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Drainage
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamage
XP Solutions	Network 2015.1	
Summary of Critical F	Results by Maximum Level (Rank 1) for Phase 3 Northern	
	Simulation Criteria	
Areal Reduction Factor 1.000 Manhole 1		³ /ha Storage 2.000
		Coeffiecient 0.800
Hot Start Level (mm) 0 Additional	Flow - % of Total Flow 0.000 Flow per Person per Day	(l/per/day) 0.000
Number of Input Hydrographs	Number of Offline Controls 0 Number of Time/Area 1	Diagrams (
	Number of Storage Structures 54 Number of Real Time (
	5	
	Synthetic Rainfall Details	
	m) -0.022 D2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0 m) 0.374 D3 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0	
Site Location Di (ik	in) 0.374 D3 (IKin) 0.270 F (IKin) 2.381 CV (WINCEI) 0	.040
Margin for Flood Risk	k Warning (mm) 100.0 DTS Status ON Inertia Status ON	
Anal	lysis Timestep Fine DVD Status ON	
Profile(s)	Summer	and Winter
Duration(s) (mins) 15, 30), 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2	
Return Period(s) (years)	4320, 5760, 7200, 8	20 20
Climate Change (%)		0
	Water Flooded Maximum Pipe Level Volume Velocity Flow	
PN Eve	ent (m) (m^3) (m/s) $(1/s)$ Sta	tus
PH3-N-1.000 30 minute 20 ye		
PH3-N-1.001 30 minute 20 ye PH3-N-1.002 60 minute 20 ye		OK OK
PH3-N-1.002 60 MINUTE 20 Ye		
	©1982-2015 XP Solutions	

Ove Arup & Partners International Ltd		Page 23
The Arup Campus		
Blyth Gate		L.
Solihull B90 8AE		Micro
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamage
XP Solutions	Network 2015.1	·

							Water	Flooded	Maximum	Pipe	
							Level	Volume	Velocity	Flow	
PN			E	vent			(m)	(m³)	(m/s)	(l/s)	Status
PH3-N-1.003	60	minute	20	year	Winter	I+0%	203.420	0.000	0.3	25.8	OK
PH3-N-2.000	15	minute	20	year	Winter	I+0%	208.555	0.000	0.1	3.8	OK
PH3-N-2.001	30	minute	20	year	Winter	I+0%	208.307	0.000	0.2	9.3	OK
PH3-N-2.002	30	minute	20	year	Winter	I+0%	207.589	0.000	0.1	8.5	OK
PH3-N-2.003	60	minute	20	year	Winter	I+0%	207.307	0.000	0.2	9.5	OK
PH3-N-3.000	15	minute	20	year	Winter	I+0%	208.571	0.000	0.1	6.3	OK
PH3-N-3.001	30	minute	20	year	Winter	I+0%	207.806	0.000			OK
PH3-N-3.002	120	minute	20	year	Winter	I+0%	207.393	0.000			OK
PH3-N-3.003	1440	minute	20	year	Winter	I+0%	207.064	0.000	0.0	1.2	OK
PH3-N-3.004	1440	minute	20	year	Winter	I+0%	207.064	0.000	0.2	1.0	OK
PH3-N-3.005	1440	minute	20	year	Winter	I+0%	206.872	0.000	0.0	0.9	OK
PH3-N-3.006	1440	minute	20	year	Winter	I+0%	206.871	0.000	0.0		OK
PH3-N-2.004				-							OK*
PH3-N-1.004				-						33.2	OK
PH3-N-1.005				-						39.1	
PH3-N-1.006				-						48.7	OK
PH3-N-1.007				-			200.926	0.000			OK
PH3-N-1.008	120	minute	20	year	Winter	I+0%	200.924	0.000	0.6		SURCHARGED*
PH3-N-1.009		minute	20	year	Winter	I+0%	200.921				OK
PH3-N-1.010	120	minute	20	year	Winter	I+0%	200.920	0.000		61.9	OK
PH3-N-1.011				-						92.1	
PH3-N-1.012	120	minute	20	year	Winter	I+0%	200.918	0.000		121.9	
PH3-N-1.013				-			200.912	0.000		153.4	
PH3-N-1.014	120	minute	20	year	Winter	I+0%	200.908	0.000	1.3	178.7	SURCHARGED*
PH3-N-1.015	120	minute	20	year	Winter	I+0%	200.900	0.000	0.3	180.2	OK
PH3-N-1.016	120	minute	20	year	Winter	I+0%	200.899	0.000	0.3	181.0	OK
					©1982-	2015	XP Soluti	ons			

Ove Arup & Partners International Ltd		Page 24
The Arup Campus		
Blyth Gate		L.
Solihull B90 8AE		Micco
Date 13/03/2017 11:17	Designed by veronika.stoyanova	
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamage
XP Solutions	Network 2015.1	·

PN			E	vent					Maximum Velocity (m/s)	Flow	Status
PH3-N-1.017	60	minute	20	year	Winter	I+0%	200.909	0.000	0.3	158.4	OK
PH3-N-4.000	120	minute	20	year	Winter	I+0%	202.955	0.000	0.1	2.0	OK
PH3-N-4.001	120	minute	20	year	Winter	I+0%	202.955	0.000	0.1	2.9	OK
PH3-N-4.002	120	minute	20	year	Winter	I+0%	202.955	0.000	0.4	2.2	OK
PH3-N-4.003	120	minute	20	year	Winter	I+0%	202.680	0.000	0.2	4.2	OK
PH3-N-4.004	120	minute	20	year	Winter	I+0%	202.680	0.000	0.2	6.7	OK
PH3-N-4.005	120	minute	20	year	Winter	I+0%	202.680	0.000	0.2	17.6	OK
PH3-N-4.006	120	minute	20	year	Winter	I+0%	202.678	0.000	0.6	27.9	OK
PH3-N-4.007	120	minute	20	year	Winter	I+0%	202.376	0.000	0.3	36.7	OK
PH3-N-4.008	120	minute	20	year	Winter	I+0%	202.376	0.000	0.3	38.0	OK
PH3-N-4.009	60	minute	20	year	Winter	I+0%	202.375	0.000	0.3	49.4	OK
PH3-N-4.010	60	minute	20	year	Winter	I+0%	202.373	0.000	0.9	69.6	OK
PH3-N-4.011	30	minute	20	year	Winter	I+0%	202.270	0.000	0.4	86.7	OK
PH3-N-5.000				-						40.5	OK
PH3-N-5.001				-							SURCHARGED
PH3-N-5.002				-						145.9	OK
PH3-N-6.000	15	minute	20	year	Winter	I+0%	207.610			30.1	
PH3-N-6.001				-			206.867				SURCHARGED
PH3-N-5.003				-						251.7	
PH3-N-7.000				-						30.0	OK
PH3-N-7.001				-							SURCHARGED
PH3-N-5.004				-						362.8	OK
PH3-N-8.000				-						31.1	
PH3-N-8.001				-						65.2	
PH3-N-5.005										375.0	
PH3-N-9.000	15	minute	20	year	Winter	I+0%	203.943	0.000	0.9	27.1	SURCHARGED
					©1982-	2015	XP Soluti	ons			

Ove Arup & Partners International Ltd		Page 25
The Arup Campus		
Blyth Gate		L.
Solihull B90 8AE		Micco
Date 13/03/2017 11:17	Designed by veronika.stoyanova	
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamage
XP Solutions	Network 2015.1	

							Water			Pipe	
			_						Velocity		.
PN			E	vent			(m)	(m³)	(m/s)	(l/s)	Status
PH3-N-9.001	15	minute	20	year	Winter	I+0%	203.817	0.000	0.9	33.3	SURCHARGED
PH3-N-9.002	30	minute	20	year	Winter	I+0%	203.661	0.000	0.9	36.3	SURCHARGED
PH3-N-9.003	30	minute	20	year	Winter	I+0%	203.526	0.000	1.0	38.6	SURCHARGED
PH3-N-10.000	15	minute	20	year	Winter	I+0%	207.302	0.000	1.4	10.0	OK
PH3-N-10.001	15	minute	20	year	Winter	I+0%	206.423	0.000	1.8	20.0	OK
PH3-N-10.002	15	minute	20	year	Winter	I+0%	205.457	0.000	2.6	48.1	OK
PH3-N-10.003	15	minute	20	year	Winter	I+0%	204.284	0.000	0.1	46.8	OK
PH3-N-10.004	15	minute	20	year	Winter	I+0%	204.154	0.000	0.1	33.2	OK
PH3-N-11.000	15	minute	20	year	Winter	I+0%	208.314	0.000	0.0	0.5	OK
PH3-N-11.001	15	minute	20	year	Winter	I+0%	207.813	0.000	0.2	1.0	OK
PH3-N-11.002	60	minute	20	year	Winter	I+0%	207.145	0.000	0.2	1.0	OK
PH3-N-11.003	180	minute	20	year	Winter	I+0%	206.742	0.000	0.1	0.7	OK
PH3-N-11.004	180	minute	20	year	Winter	I+0%	206.587	0.000	0.1	0.8	OK
PH3-N-11.005	120	minute	20	year	Winter	I+0%	206.428	0.000	0.2	1.0	OK
PH3-N-11.006	360	minute	20	year	Winter	I+0%	206.209	0.000	0.2	1.0	OK
PH3-N-11.007	15	minute	20	year	Winter	I+0%	205.665	0.000	0.1	1.8	OK
PH3-N-12.000	15	minute	20	year	Winter	I+0%	208.350	0.000	0.0	2.0	OK
PH3-N-12.001	60	minute	20	year	Winter	I+0%	208.252	0.000	0.2	1.0	OK
PH3-N-12.002	180	minute	20	year	Winter	I+0%	207.578	0.000	0.2	1.0	OK
PH3-N-12.003	120	minute	20	year	Winter	I+0%	206.700	0.000	0.2	1.3	OK
PH3-N-11.008	240	minute	20	year	Winter	I+0%	205.606	0.000	0.0	2.6	OK
PH3-N-11.009	240	minute	20	year	Winter	I+0%	205.601	0.000	0.3	2.9	OK
PH3-N-11.010	720	minute	20	year	Winter	I+0%	205.037	0.000	0.1	2.2	OK
PH3-N-11.011	720	minute	20	year	Winter	I+0%	204.737	0.000	0.2	2.3	OK
PH3-N-13.000	30	minute	20	year	Winter	I+0%	206.550	0.000	0.0	0.8	OK
PH3-N-13.001	30	minute	20	year	Winter	I+0%	206.536	0.000	0.1	0.9	OK
					©1982-2	2015 >	KP Solution	ons			

Ove Arup & Partners International Ltd		Page 26
The Arup Campus		
Blyth Gate		L.
Solihull B90 8AE		Micro
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamage
XP Solutions	Network 2015.1	

							Water		Maximum	-	
							Level	Volume	Velocity	Flow	
PN			E	vent			(m)	(m³)	(m/s)	(l/s)	Status
PH3-N-13.002	60	minute	20	year	Winter	I+0%	206.252	0.000	0.2	1.0	OK
PH3-N-13.003	240	minute	20	year	Winter	I+0%	205.986	0.000	0.2	1.0	OK
PH3-N-13.004	360	minute	20	year	Winter	I+0%	205.200	0.000	0.2	1.2	OK
PH3-N-11.012	720	minute	20	year	Winter	I+0%	204.436	0.000	1.0	3.2	OK*
PH3-N-10.005	120	minute	20	year	Winter	I+0%	204.143	0.000	0.0	16.6	OK
PH3-N-10.006	120	minute	20	year	Winter	I+0%	204.138	0.000	0.2	13.6	OK
PH3-N-10.007	60	minute	20	year	Winter	I+0%	203.827	0.000	0.1	16.0	OK
PH3-N-10.008	60	minute	20	year	Winter	I+0%	203.825	0.000	0.0	11.8	OK
PH3-N-10.009	60	minute	20	year	Winter	I+0%	203.516	0.000	0.0	13.3	OK
PH3-N-10.010				-			203.508	0.000	0.0	16.5	OK
PH3-N-10.011	60	minute	20	year	Winter	I+0%	203.506	0.000	0.2	21.0	OK
PH3-N-10.012	30	minute	20	year	Winter	I+0%	203.305	0.000	0.1	22.7	OK
PH3-N-10.013	30	minute	20	year	Winter	I+0%	203.310	0.000	0.8	85.0	SURCHARGED*
PH3-N-5.006	30	minute	20	year	Winter	I+0%	203.322	0.000	1.1	358.3	OK
PH3-N-5.007	30	minute	20	year	Winter	I+0%	203.279	0.000	1.2	324.1	FLOOD RISK*
PH3-N-5.008	30	minute	20	year	Winter	I+0%	202.774	0.000	2.7	290.4	OK
PH3-N-14.000	15	minute	20	year	Winter	I+0%	206.150	0.000	1.3	8.6	OK
PH3-N-15.000	15	minute	20	year	Winter	I+0%	206.208	0.000	1.6	29.6	OK
PH3-N-14.001	15	minute	20	year	Winter	I+0%	205.457	0.000	2.2	68.6	SURCHARGED
PH3-N-16.000	15	minute	20	year	Winter	I+0%	205.484	0.000	1.5	20.0	OK
PH3-N-14.002	15	minute	20	year	Winter	I+0%	204.973	0.000	2.4	92.2	SURCHARGED
PH3-N-17.000	15	minute	20	year	Winter	I+0%	204.288	0.000	1.4	19.6	OK
PH3-N-14.003	15	minute	20	year	Winter	I+0%	203.844	0.000	3.2	126.4	SURCHARGED
PH3-N-5.009	30	minute	20	year	Winter	I+0%	202.276	0.000	2.0	401.7	OK
PH3-N-4.012	30	minute	20	year	Winter	I+0%	202.269	0.000	2.6	362.7	SURCHARGED*
PH3-N-4.013	30	minute	20	year	Winter	I+0%	201.639	0.000	1.6	362.7	OK
	©1982-2015 XP Solutions										

Ove Arup & Partners International Ltd		Page 27
The Arup Campus		
Blyth Gate		4
Solihull B90 8AE		Micco
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamage
XP Solutions	Network 2015.1	· · · · · · · · · · · · · · · · · · ·

				Maximum	-	
	Provent			Velocity		C h = h = e
PN	Event	(m)	(m³)	(m/s)	(1/s)	Status
PH3-N-4.014	30 minute 20 year Winter I	I+0% 201.341	0.000	2.1	365.1	OK
PH3-N-4.015	60 minute 20 year Winter I	I+0% 200.975	0.000	1.9	349.2	OK
PH3-N-4.016	60 minute 20 year Winter I	I+0% 200.953	0.000	1.3	337.4	OK
PH3-N-1.018	60 minute 20 year Winter I	L+0% 200.925	0.000	2.3	257.1	SURCHARGED*
PH3-N-1.019	60 minute 20 year Winter I	E+0% 200.493	0.000	2.3	257.1	SURCHARGED
PH3-N-1.020	60 minute 20 year Winter I	I+0% 199.854	0.000	0.5	257.1	OK
PH3-N-1.021	60 minute 20 year Winter I	I+0% 199.793	0.000	3.0	257.1	OK
PH3-N-1.022	60 minute 20 year Winter I	I+0% 198.596	0.000	2.0	257.1	OK
PH3-N-18.000	15 minute 20 year Winter I	I+0% 200.917	0.000	0.4	7.3	OK
PH3-N-18.001	15 minute 20 year Winter I	I+0% 200.428	0.000	0.7	18.8	OK
PH3-N-18.002	60 minute 20 year Winter I	I+0% 200.052	0.000	0.9	20.6	OK*
PH3-N-18.003	60 minute 20 year Winter I	I+0% 200.050	0.000	1.0	28.7	OK
PH3-N-18.004	60 minute 20 year Winter I	I+0% 199.744	0.000	0.2	29.9	OK
PH3-N-18.005	60 minute 20 year Winter I	I+0% 199.743	0.000	0.2	29.9	OK
PH3-N-18.006	60 minute 20 year Winter I	L+0% 199.740	0.000	0.2	35.4	OK
PH3-N-18.007	60 minute 20 year Winter I	I+0% 199.735	0.000	0.2	50.8	OK
PH3-N-18.008	60 minute 20 year Winter I	I+0% 199.725	0.000	0.2	73.8	OK
PH3-N-19.000	15 minute 20 year Winter I	I+0% 203.027	0.000	0.4	9.9	OK
PH3-N-19.001	30 minute 20 year Winter I	I+0% 202.996	0.000	0.9	13.8	OK
PH3-N-19.002	30 minute 20 year Winter I	I+0% 202.681	0.000	0.2	26.4	FLOOD RISK*
PH3-N-19.003	30 minute 20 year Winter I	I+0% 202.352	0.000	1.7	33.5	OK
PH3-N-19.004	30 minute 20 year Winter I	I+0% 201.867	0.000	1.6	48.8	OK
PH3-N-19.005	15 minute 20 year Winter I	I+0% 201.296	0.000	1.8	80.5	OK
PH3-N-19.006	15 minute 20 year Winter I	I+0% 200.210	0.000	1.0	122.8	OK
PH3-N-19.007	15 minute 20 year Winter I	I+0% 199.940	0.000	1.1	178.6	OK
PH3-N-19.008	30 minute 20 year Winter I	I+0% 199.775	0.000	0.8	187.8	OK
	©1982-2	2015 XP Solut	ions			

Ove Arup & Partners International Ltd		Page 28
The Arup Campus		
Blyth Gate		4
Solihull B90 8AE		Micco
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Digitight
XP Solutions	Network 2015.1	·

PN Event (m) (m ³) (m/s) (1/s) Status PH3-N-19.009 60 minute 20 year Winter I+0% 199.757 0.000 0.4 149.6 0K PH3-N-19.010 60 minute 20 year Winter I+0% 199.733 0.000 0.6 156.3 0K PH3-N-18.009 60 minute 20 year Winter I+0% 199.733 0.000 0.2 149.8 SURCHARGED PH3-N-18.010 60 minute 20 year Winter I+0% 199.573 0.000 1.3 145.5 SURCHARGED PH3-N-18.011 60 minute 20 year Winter I+0% 199.583 0.000 1.3 143.6 SURCHARGED PH3-N-18.013 30 minute 20 year Winter I+0% 199.658 0.000 1.4 143.2 SURCHARGED PH3-N-18.013 30 minute 20 year Winter I+0% 198.585 0.000 1.4 143.2 SURCHARGED PH3-N-1.023 60 minute 20 year Winter I+0% 19								Water Level		Maximum Velocity	-	
PH3-N-19.01060minute20yearWinterI+0%199.7330.0000.6156.3OKPH3-N-18.00960minute20yearWinterI+0%199.7170.0001.4151.5SURCHARGED*PH3-N-18.01160minute20yearWinterI+0%199.5830.0000.2149.8SURCHARGEDPH3-N-18.01160minute20yearWinterI+0%199.5730.0001.3145.5SURCHARGEDPH3-N-18.01330minute20yearWinterI+0%199.6690.0001.3144.4SURCHARGEDPH3-N-18.01330minute20yearWinterI+0%198.8440.0001.4143.2SURCHARGEDPH3-N-18.01530minute20yearWinterI+0%198.5550.0001.4143.2SURCHARGEDPH3-N-1.02360minute20yearWinterI+0%198.2510.0002.3398.6OKPH3-N-1.02460minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02560minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02660minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02960minute20yea	PN			E	vent					-		Status
PH3-N-18.00960minute20yearWinterI+0%199.7170.0001.4151.5SURCHARGED*PH3-N-18.01060minute20yearWinterI+0%199.5830.0000.2149.8SURCHARGEDPH3-N-18.01160minute20yearWinterI+0%199.5730.0001.3145.5SURCHARGEDPH3-N-18.01260minute20yearWinterI+0%199.3210.0001.3144.4SURCHARGEDPH3-N-18.01330minute20yearWinterI+0%198.8440.0001.4143.2SURCHARGEDPH3-N-18.01530minute20yearWinterI+0%198.5850.0001.4143.2SURCHARGEDPH3-N-1.02360minute20yearWinterI+0%198.2510.0002.3398.6SURCHARGEDPH3-N-1.02460minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02560minute20yearWinterI+0%193.0800.0003.4398.6OKPH3-N-1.02660minute20yearWinterI+0%193.0800.0003.4398.6OKPH3-N-1.02860minute20yearWinterI+0%190.7740.0000.3398.6FLOOD RISK*PH3-N-1.031120minute<	PH3-N-19.009	60	minute	20	year	Winter	I+0%	199.757	0.000	0.4	149.6	OK
PH3-N-18.01060minute20yearWinterI+0%199.5830.0000.2149.8SURCHARGEDPH3-N-18.01160minute20yearWinterI+0%199.5730.0001.3145.5SURCHARGEDPH3-N-18.01260minute20yearWinterI+0%199.3210.0001.3145.6SURCHARGEDPH3-N-18.01330minute20yearWinterI+0%199.6900.0001.4143.2SURCHARGEDPH3-N-18.01530minute20yearWinterI+0%198.5850.0001.4143.2SURCHARGEDPH3-N-1.02360minute20yearWinterI+0%198.2510.0002.3398.6SURCHARGEDPH3-N-1.02460minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02560minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02660minute20yearWinterI+0%193.0800.0003.4398.6OKPH3-N-1.02760minute20yearWinterI+0%191.7220.0002.3398.6SURCHARGED*PH3-N-1.02860minute20yearWinterI+0%190.9740.0000.2385.6FLOOD RISK*PH3-N-1.03160minute <td< td=""><td>PH3-N-19.010</td><td>60</td><td>minute</td><td>20</td><td>year</td><td>Winter</td><td>I+0%</td><td>199.733</td><td>0.000</td><td>0.6</td><td>156.3</td><td>OK</td></td<>	PH3-N-19.010	60	minute	20	year	Winter	I+0%	199.733	0.000	0.6	156.3	OK
PH3-N-18.01160minute20yearWinterI+0%199.5730.0001.3145.5SURCHARGEDPH3-N-18.01260minute20yearWinterI+0%199.3210.0001.3144.4SURCHARGEDPH3-N-18.01330minute20yearWinterI+0%198.8440.0001.4143.2SURCHARGEDPH3-N-18.01430minute20yearWinterI+0%198.5850.0001.4143.2SURCHARGEDPH3-N-18.01530minute20yearWinterI+0%198.5850.0001.4143.2SURCHARGEDPH3-N-1.02360minute20yearWinterI+0%198.5850.0001.4143.2SURCHARGEDPH3-N-1.02460minute20yearWinterI+0%198.2510.0001.9398.6SURCHARGEDPH3-N-1.02560minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02660minute20yearWinterI+0%193.0800.0003.4398.6OKPH3-N-1.02760minute20yearWinterI+0%191.7220.0002.9398.6SURCHARGEDPH3-N-1.03860minute20yearWinterI+0%190.9740.0000.3398.6FLOD RISK*PH3-N-1.031120minute<	PH3-N-18.009	60	minute	20	year	Winter	I+0%	199.717	0.000	1.4	151.5	SURCHARGED*
PH3-N-18.01260minute20yearWinterI+0%199.3210.0001.3143.6SURCHARGEDPH3-N-18.01330minute20yearWinterI+0%199.0690.0001.3144.4SURCHARGEDPH3-N-18.01430minute20yearWinterI+0%198.8440.0001.4143.2SURCHARGEDPH3-N-18.01530minute20yearWinterI+0%198.2510.0002.3398.6OKPH3-N-1.02360minute20yearWinterI+0%197.8010.0001.9398.6SURCHARGEDPH3-N-1.02460minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02560minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02660minute20yearWinterI+0%197.3710.0003.4398.6OKPH3-N-1.02860minute20yearWinterI+0%197.220.0003.4398.6SURCHARGED*PH3-N-1.03060minute20yearWinterI+0%191.7220.0000.3398.6FLOOD RISK*PH3-N-1.031120minute20yearWinterI+0%190.9740.0000.3398.6SURCHARGEDPH3-N-1.03360minute20<	PH3-N-18.010	60	minute	20	year	Winter	I+0%	199.583	0.000	0.2	149.8	SURCHARGED
PH3-N-18.01330minute20yearWinterI+0%199.0690.0001.3144.4SURCHARGEDPH3-N-18.01430minute20yearWinterI+0%198.8440.0001.4143.2SURCHARGEDPH3-N-18.01530minute20yearWinterI+0%198.5850.0001.4143.2SURCHARGEDPH3-N-1.02360minute20yearWinterI+0%198.2510.0002.3398.6OKPH3-N-1.02460minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02560minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02660minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02760minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02860minute20yearWinterI+0%193.0800.0003.4398.6OKPH3-N-1.031120minute20yearWinterI+0%191.1050.0000.3398.6FLOOD RISK*PH3-N-1.03260minute20yearWinterI+0%190.7580.0000.2385.6FLOOD RISK*PH3-N-1.03360minute20year	PH3-N-18.011	60	minute	20	year	Winter	I+0%	199.573	0.000	1.3	145.5	SURCHARGED
PH3-N-18.01430 minute20yearWinterI+0%198.8440.0001.4143.2SURCHARGEDPH3-N-18.01530 minute20yearWinterI+0%198.5850.0001.4143.2SURCHARGEDPH3-N-1.02360 minute20yearWinterI+0%198.2510.0002.3398.6OKPH3-N-1.02460 minute20yearWinterI+0%197.3710.0001.9398.6SURCHARGEDPH3-N-1.02560 minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02660 minute20yearWinterI+0%193.0800.0003.4398.6OKPH3-N-1.02760 minute20yearWinterI+0%191.7220.0002.9398.6OKPH3-N-1.02860 minute20yearWinterI+0%191.7220.0000.4398.6SURCHARGED*PH3-N-1.031120 minute20yearWinterI+0%190.9740.0000.3398.6SURCHARGEDPH3-N-1.03360 minute20yearWinterI+0%190.7580.0000.2385.6FLOOD RISK*PH3-N-1.03360 minute20yearWinterI+0%190.7580.0000.235.5OKPH3-N-20.00115 minute20yearWinterI+0%190.8490.0000.235.5OK <td>PH3-N-18.012</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>0.000</td> <td>1.3</td> <td>143.6</td> <td>SURCHARGED</td>	PH3-N-18.012				-				0.000	1.3	143.6	SURCHARGED
PH3-N-18.01530 minute20yearWinterI+0%198.5850.0001.4143.2SURCHARGEDPH3-N-1.02360 minute20yearWinterI+0%198.2510.0002.3398.6OKPH3-N-1.02460 minute20yearWinterI+0%197.8010.0001.9398.6SURCHARGEDPH3-N-1.02560 minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02660 minute20yearWinterI+0%196.2910.0005.5398.6OKPH3-N-1.02760 minute20yearWinterI+0%193.0800.0003.4398.6OKPH3-N-1.02860 minute20yearWinterI+0%191.7220.0002.9398.6OKPH3-N-1.02960 minute20yearWinterI+0%191.1050.0000.4398.6SURCHARGED*PH3-N-1.031120 minute20yearWinterI+0%190.9740.0000.2385.6FLOOD RISK*PH3-N-1.03360 minute20yearWinterI+0%190.7580.0006.6398.6SURCHARGEDPH3-N-20.00115minute20yearWinterI+0%192.6270.0000.235.5OKPH3-N-20.00115minute20yearWinterI+0%190.8490.0000.843.1 <t< td=""><td>PH3-N-18.013</td><td>30</td><td>minute</td><td>20</td><td>year</td><td>Winter</td><td>I+0%</td><td>199.069</td><td>0.000</td><td>1.3</td><td>144.4</td><td>SURCHARGED</td></t<>	PH3-N-18.013	30	minute	20	year	Winter	I+0%	199.069	0.000	1.3	144.4	SURCHARGED
PH3-N-1.02360minute20yearWinterI+0%198.2510.0002.3398.6OKPH3-N-1.02460minute20yearWinterI+0%197.8010.0001.9398.6SURCHARGEDPH3-N-1.02560minute20yearWinterI+0%197.3710.0002.7398.6OKPH3-N-1.02660minute20yearWinterI+0%196.2910.0005.5398.6OKPH3-N-1.02760minute20yearWinterI+0%191.7220.0003.4398.6SURCHARGED*PH3-N-1.02860minute20yearWinterI+0%191.7220.0000.4398.6SURCHARGED*PH3-N-1.02960minute20yearWinterI+0%191.1050.0000.4398.6SURCHARGED*PH3-N-1.03060minute20yearWinterI+0%190.9740.0000.3398.6FLOOD RISK*PH3-N-1.031120minute20yearWinterI+0%190.7580.0000.2385.6SURCHARGEDPH3-N-1.03360minute20yearWinterI+0%192.6270.0000.2355.5OKPH3-N-20.00115minute20yearWinterI+0%188.1820.0000.787.6OKPH3-N-20.00215minute20year<	PH3-N-18.014	30	minute	20	year	Winter	I+0%	198.844		1.4	143.2	SURCHARGED
PH3-N-1.02460 minute 20 year Winteryear WinterI+0%197.8010.0001.9398.6SURCHARGEDPH3-N-1.02560 minute 20 year Winter1+0%197.3710.0002.7398.6OKPH3-N-1.02660 minute 20 year Winter1+0%196.2910.0005.5398.6OKPH3-N-1.02760 minute 20 year Winter1+0%193.0800.0003.4398.6OKPH3-N-1.02860 minute 20 year Winter1+0%191.7220.0002.9398.6OKPH3-N-1.02960 minute 20 year Winter1+0%191.1050.0000.4398.6SURCHARGED*PH3-N-1.03060 minute 20 	PH3-N-18.015	30	minute	20	year	Winter	I+0%	198.585	0.000	1.4	143.2	SURCHARGED
PH3-N-1.02560 minute 20year Winter I+0%197.3710.0002.7398.6OKPH3-N-1.02660 minute 20year Winter I+0%196.2910.0005.5398.6OKPH3-N-1.02760 minute 20year Winter I+0%193.0800.0003.4398.6OKPH3-N-1.02860 minute 20year Winter I+0%191.7220.0002.9398.6OKPH3-N-1.02960 minute 20year Winter I+0%191.1050.0000.4398.6SURCHARGED*PH3-N-1.03060 minute 20year Winter I+0%190.9740.0000.3398.6FLOOD RISK*PH3-N-1.031120 minute 20year Winter I+0%190.97580.0000.2385.6FLOOD RISK*PH3-N-1.03260 minute 20year Winter I+0%187.5760.0004.4398.6OKPH3-N-20.00015 minute 20year Winter I+0%192.6270.0000.235.5OKPH3-N-20.00115 minute 20year Winter I+0%190.8490.0000.843.1OKPH3-N-21.00030 minute 20year Winter I+0%188.1820.0000.787.6OKPH3-N-21.00115 minute 20year Winter I+0%188.5590.0000.111.2OKPH3-N-21.00115 minute 20year Winter I+0%188.5590.0000.228.6OK	PH3-N-1.023	60	minute	20	year	Winter	I+0%	198.251	0.000	2.3	398.6	OK
PH3-N-1.02660 minute20 yearWinterI+0%196.2910.0005.5398.6OKPH3-N-1.02760 minute20 yearWinterI+0%193.0800.0003.4398.6OKPH3-N-1.02860 minute20 yearWinterI+0%191.7220.0002.9398.6OKPH3-N-1.02960 minute20 yearWinterI+0%191.1050.0000.4398.6SURCHARGED*PH3-N-1.03060 minute20 yearWinterI+0%190.9740.0000.3398.6FLOOD RISK*PH3-N-1.031120 minute20 yearSummerI+0%190.9100.0000.2385.6FLOOD RISK*PH3-N-1.03260 minute20 yearWinterI+0%190.7580.0006.6398.6SURCHARGEDPH3-N-1.03360 minute20 yearWinterI+0%187.5760.0004.4398.6OKPH3-N-20.00015 minute20 yearWinterI+0%192.6270.0000.235.5OKPH3-N-20.00115 minute20 yearWinterI+0%190.8490.0000.843.1OKPH3-N-21.00030 minute20 yearWinterI+0%188.1820.0000.787.6OKPH3-N-21.00115 minute20 yearWinterI+0%188.6190.0000.111.2OKPH3-N-21.00115 minute20 yearWinterI+0%188.559 <td< td=""><td>PH3-N-1.024</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>1.9</td><td>398.6</td><td>SURCHARGED</td></td<>	PH3-N-1.024				-					1.9	398.6	SURCHARGED
PH3-N-1.02760 minute 20 year Winter I+0%193.0800.0003.4398.6OKPH3-N-1.02860 minute 20 year Winter I+0%191.7220.0002.9398.6OKPH3-N-1.02960 minute 20 year Winter I+0%191.1050.0000.4398.6SURCHARGED*PH3-N-1.03060 minute 20 year Winter I+0%190.9740.0000.3398.6FLOOD RISK*PH3-N-1.031120 minute 20 year Summer I+0%190.9100.0000.2385.6FLOOD RISK*PH3-N-1.03260 minute 20 year Winter I+0%190.7580.0006.6398.6SURCHARGEDPH3-N-1.03360 minute 20 year Winter I+0%187.5760.0004.4398.6OKPH3-N-20.00015 minute 20 year Winter I+0%192.6270.0000.235.5OKPH3-N-20.00115 minute 20 year Winter I+0%190.8490.0000.843.1OKPH3-N-21.00030 minute 20 year Winter I+0%188.1820.0000.787.6OKPH3-N-21.00115 minute 20 year Winter I+0%188.5590.0000.111.2OK	PH3-N-1.025	60	minute	20	year	Winter	I+0%	197.371	0.000	2.7	398.6	OK
PH3-N-1.02860 minute 20 year Winter I+0% 191.7220.0002.9 398.6OKPH3-N-1.02960 minute 20 year Winter I+0% 191.1050.0000.4 398.6SURCHARGED*PH3-N-1.03060 minute 20 year Winter I+0% 190.9740.0000.3 398.6FLOOD RISK*PH3-N-1.031120 minute 20 year Summer I+0% 190.9100.0000.2 385.6FLOOD RISK*PH3-N-1.03260 minute 20 year Winter I+0% 190.7580.0006.6 398.6SURCHARGEDPH3-N-1.03360 minute 20 year Winter I+0% 187.5760.0004.4 398.6OKPH3-N-20.00015 minute 20 year Winter I+0% 192.6270.0000.2 35.5OKPH3-N-20.00115 minute 20 year Winter I+0% 188.1820.0000.7 87.6OKPH3-N-21.00030 minute 20 year Winter I+0% 188.6190.0000.1 11.2OKPH3-N-21.00115 minute 20 year Winter I+0% 188.5590.0000.2 28.6OK	PH3-N-1.026	60	minute	20	year	Winter	I+0%	196.291	0.000	5.5	398.6	OK
PH3-N-1.02960 minute 20 year Winter I+0%191.1050.0000.4398.6SURCHARGED*PH3-N-1.03060 minute 20 year Winter I+0%190.9740.0000.3398.6FLOOD RISK*PH3-N-1.031120 minute 20 year Summer I+0%190.9100.0000.2385.6FLOOD RISK*PH3-N-1.03260 minute 20 year Winter I+0%190.7580.0006.6398.6SURCHARGEDPH3-N-1.03360 minute 20 year Winter I+0%187.5760.0004.4398.6OKPH3-N-20.00015 minute 20 year Winter I+0%192.6270.0000.235.5OKPH3-N-20.00115 minute 20 year Winter I+0%190.8490.0000.843.1OKPH3-N-21.00030 minute 20 year Winter I+0%188.1820.0000.787.6OKPH3-N-21.00115 minute 20 year Winter I+0%188.6190.0000.111.2OKPH3-N-21.00115 minute 20 year Winter I+0%188.5590.0000.228.6OK	PH3-N-1.027	60	minute	20	year	Winter	I+0%	193.080	0.000	3.4	398.6	OK
PH3-N-1.03060 minute 20 year Winter I+0% 190.9740.0000.3 398.6 FLOOD RISK*PH3-N-1.031120 minute 20 year Summer I+0% 190.9100.0000.2 385.6 FLOOD RISK*PH3-N-1.03260 minute 20 year Winter I+0% 190.7580.0006.6 398.6 SURCHARGEDPH3-N-1.03360 minute 20 year Winter I+0% 192.6270.0004.4 398.6PH3-N-20.00015 minute 20 year Winter I+0% 192.6270.0000.2 35.5PH3-N-20.00115 minute 20 year Winter I+0% 190.8490.0000.8 43.1PH3-N-20.00215 minute 20 year Winter I+0% 188.1820.0000.7 87.6PH3-N-21.00030 minute 20 year Winter I+0% 188.6190.0000.1 11.2PH3-N-21.00115 minute 20 year Winter I+0% 188.5590.0000.2 28.6	PH3-N-1.028	60	minute	20	year	Winter	I+0%	191.722	0.000	2.9	398.6	OK
PH3-N-1.031120 minute 20 year Summer I+0% 190.9100.0000.2 385.6 FLOOD RISK*PH3-N-1.03260 minute 20 year Winter I+0% 190.7580.0006.6 398.6 SURCHARGEDPH3-N-1.03360 minute 20 year Winter I+0% 187.5760.0004.4 398.6OKPH3-N-20.00015 minute 20 year Winter I+0% 192.6270.0000.2 35.5OKPH3-N-20.00115 minute 20 year Winter I+0% 190.8490.0000.8 43.1OKPH3-N-20.00215 minute 20 year Winter I+0% 188.1820.0000.7 87.6OKPH3-N-21.00030 minute 20 year Winter I+0% 188.6190.0000.1 11.2OKPH3-N-21.00115 minute 20 year Winter I+0% 188.5590.0000.2 28.6OK	PH3-N-1.029	60	minute	20	year	Winter	I+0%	191.105	0.000	0.4	398.6	SURCHARGED*
PH3-N-1.03260 minute 20 year Winter I+0% 190.7580.0006.6 398.6SURCHARGEDPH3-N-1.03360 minute 20 year Winter I+0% 187.5760.0004.4 398.6OKPH3-N-20.00015 minute 20 year Winter I+0% 192.6270.0000.2 35.5OKPH3-N-20.00115 minute 20 year Winter I+0% 190.8490.0000.8 43.1OKPH3-N-20.00215 minute 20 year Winter I+0% 188.1820.0000.7 87.6OKPH3-N-21.00030 minute 20 year Winter I+0% 188.6190.0000.1 11.2OKPH3-N-21.00115 minute 20 year Winter I+0% 188.5590.0000.2 28.6OK	PH3-N-1.030	60	minute	20	year	Winter	I+0%	190.974	0.000	0.3	398.6	FLOOD RISK*
PH3-N-1.03360 minute 20 year Winter I+0% 187.5760.0004.4 398.6OKPH3-N-20.00015 minute 20 year Winter I+0% 192.6270.0000.2 35.5OKPH3-N-20.00115 minute 20 year Winter I+0% 190.8490.0000.8 43.1OKPH3-N-20.00215 minute 20 year Winter I+0% 188.1820.0000.7 87.6OKPH3-N-21.00030 minute 20 year Winter I+0% 188.6190.0000.1 11.2OKPH3-N-21.00115 minute 20 year Winter I+0% 188.5590.0000.2 28.6OK	PH3-N-1.031	120	minute	20	year	Summer	I+0%	190.910	0.000	0.2	385.6	FLOOD RISK*
PH3-N-20.00015 minute 20 year Winter I+0% 192.6270.0000.235.5OKPH3-N-20.00115 minute 20 year Winter I+0% 190.8490.0000.843.1OKPH3-N-20.00215 minute 20 year Winter I+0% 188.1820.0000.787.6OKPH3-N-21.00030 minute 20 year Winter I+0% 188.6190.0000.111.2OKPH3-N-21.00115 minute 20 year Winter I+0% 188.5590.0000.228.6OK	PH3-N-1.032	60	minute	20	year	Winter	I+0%	190.758	0.000	6.6	398.6	SURCHARGED
PH3-N-20.00115 minute20 yearWinterI+0%190.8490.0000.843.1OKPH3-N-20.00215 minute20 yearWinterI+0%188.1820.0000.787.6OKPH3-N-21.00030 minute20 yearWinterI+0%188.6190.0000.111.2OKPH3-N-21.00115 minute20 yearWinterI+0%188.5590.0000.228.6OK	PH3-N-1.033	60	minute	20	year	Winter	I+0%	187.576	0.000	4.4	398.6	OK
PH3-N-20.00215 minute20 yearWinterI+0%188.1820.0000.787.6OKPH3-N-21.00030 minute20 yearWinterI+0%188.6190.0000.111.2OKPH3-N-21.00115 minute20 yearWinterI+0%188.5590.0000.228.6OK	PH3-N-20.000	15	minute	20	year	Winter	I+0%	192.627	0.000	0.2	35.5	OK
PH3-N-21.000 30 minute 20 year Winter I+0% 188.619 0.000 0.1 11.2 OK PH3-N-21.001 15 minute 20 year Winter I+0% 188.559 0.000 0.2 28.6 OK	PH3-N-20.001	15	minute	20	year	Winter	I+0%	190.849	0.000	0.8	43.1	OK
PH3-N-21.001 15 minute 20 year Winter I+0% 188.559 0.000 0.2 28.6 OK	PH3-N-20.002	15	minute	20	year	Winter	I+0%	188.182	0.000	0.7	87.6	OK
-	PH3-N-21.000	30	minute	20	year	Winter	I+0%	188.619	0.000	0.1	11.2	OK
PH3-N-21.002 30 minute 20 year Winter I+0% 188.187 0.000 0.4 55.1 OK	PH3-N-21.001	15	minute	20	year	Winter	I+0%	188.559	0.000	0.2	28.6	OK
	PH3-N-21.002	30	minute	20	year	Winter	I+0%	188.187	0.000	0.4	55.1	OK

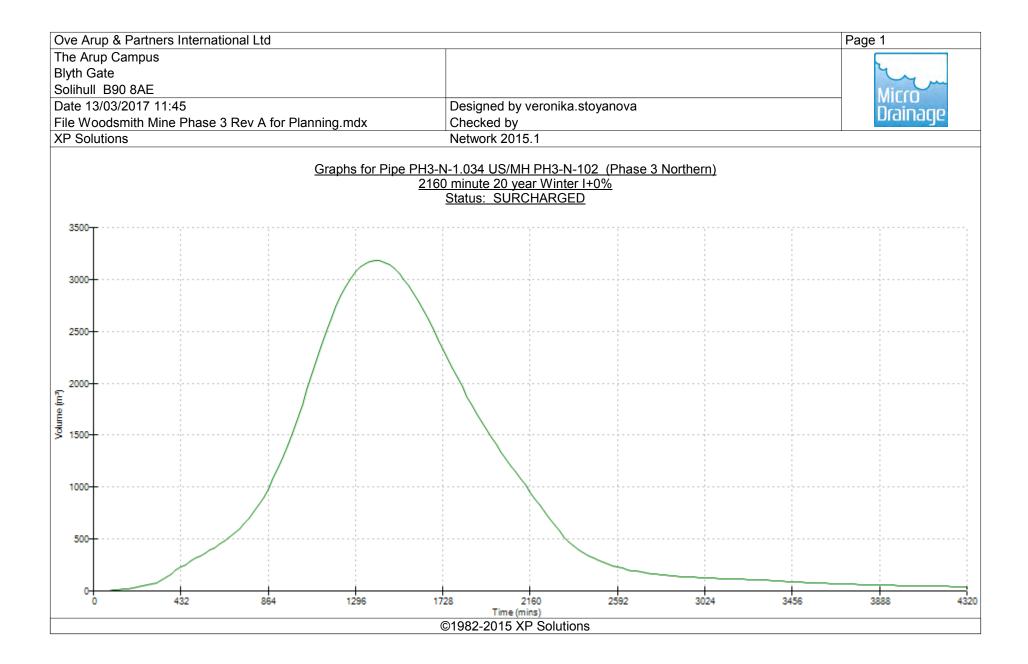
Ove Arup & Partners International Ltd		Page 29
The Arup Campus		
Blyth Gate		4
Solihull B90 8AE		Micro
Date 13/03/2017 11:17	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Drainage
XP Solutions	Network 2015.1	

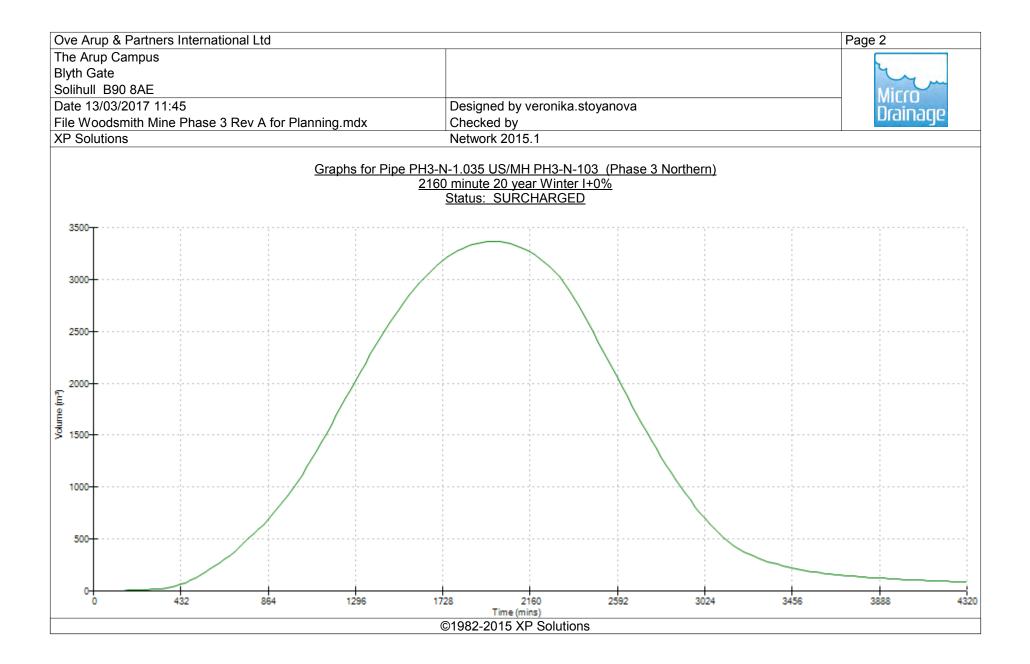
							Water	Flooded	Maximum	Pipe	
							Level	Volume	Velocity	Flow	
PN			Ev	vent			(m)	(m³)	(m/s)	(l/s)	Status
PH3-N-21.003	30	minute	20	vear	Winter	I+0%	187.755	0.000	1.4	53.3	OK*
PH3-N-21.004				-			187.362	0.000	1.3	52.7	OK
PH3-N-21.005	15	minute	20	- year	Winter	I+0%	187.082	0.000	0.2	124.3	OK
PH3-N-20.003	15	minute	20	year	Winter	I+0%	186.815	0.000	4.2	380.2	SURCHARGED*
PH3-N-20.004	120	minute	20	year	Winter	I+0%	185.615	0.000	1.6	99.4	OK
PH3-N-20.005	720	minute	20	year	Winter	I+0%	185.517	0.000	1.5	64.9	SURCHARGED
PH3-N-1.034	720	minute	20	year	Winter	I+0%	185.485	0.000	3.4	138.1	FLOOD RISK
PH3-N-1.035	2160	minute	20	year	Winter	I+0%	182.598	0.000	2.9	91.4	SURCHARGED
PH3-N-1.036	2880	minute	20	year	Winter	I+0%	180.290	0.000	4.0	77.7	FLOOD RISK
PH3-N-1.037	2880	minute	20	year	Winter	I+0%	174.575	0.000	0.2	77.7	OK

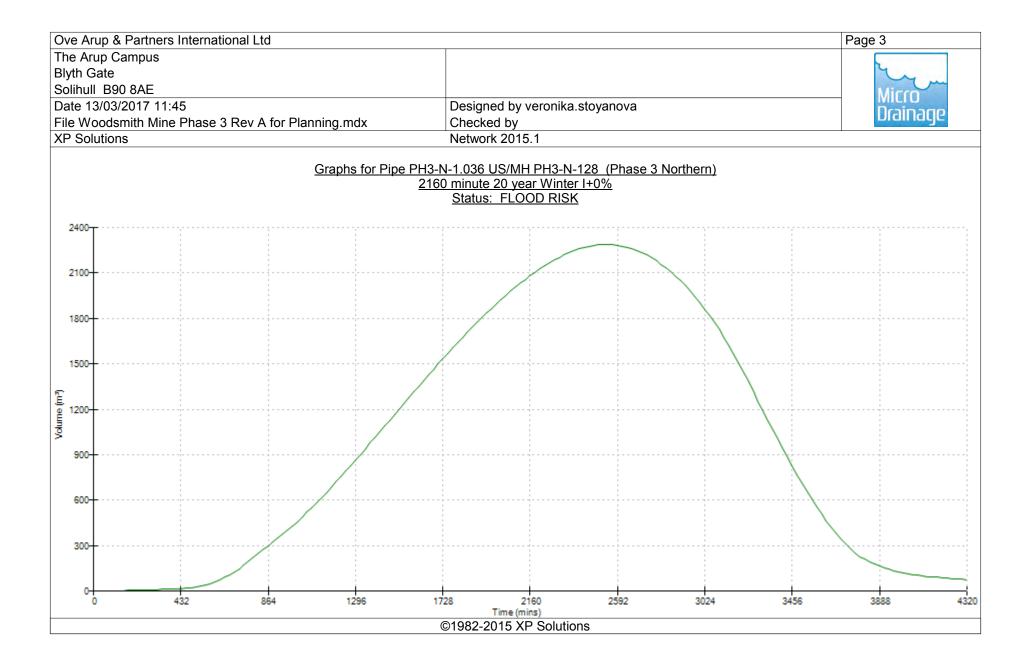
©1982-2015 XP Solutions

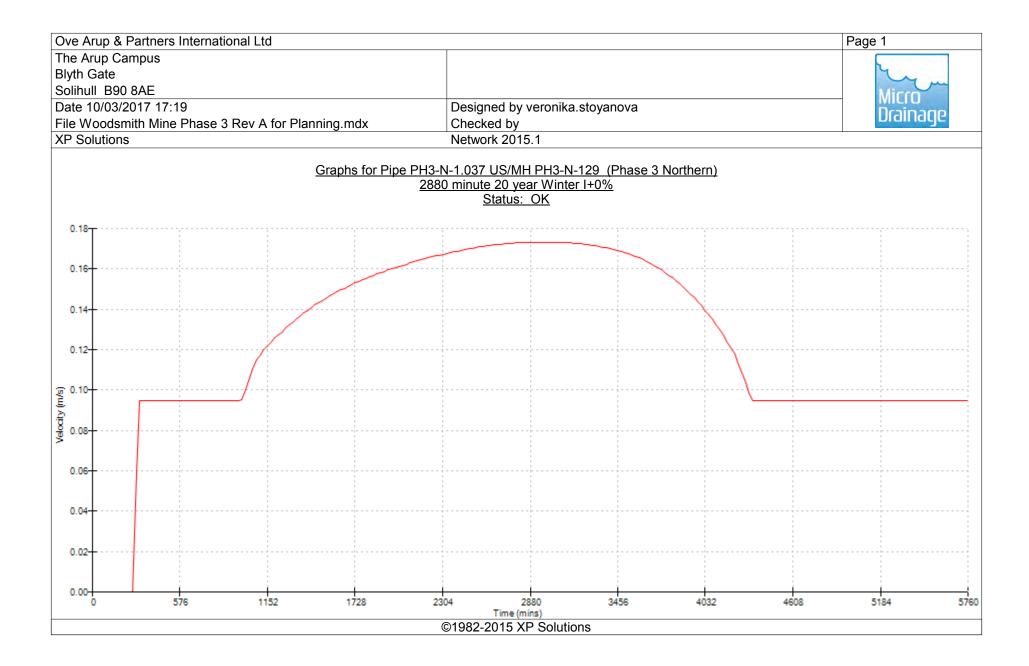
Ove Arup & Partners International Ltd								Page 1
he Arup Campus Iyth Gate olihull B90 8AE								Lun
ate 13/03/2017 10:58			1	Desiar	ned by vero	nika.stoyano	ova	MILIO
ile Woodsmith Mine Phase 3 Rev A f	or Planning mdy			-	ed by			Drainage
(P Solutions	or r larning.max				rk 2015.1			
		A				e 3 Northern		
	Pipe Number				Gross Area (ha)	Imp. Aroa (ha)	Pipe Total (ha)	
	Nuiiber	туре	name	(~)	ALEA (IId)	Area (IId)	(114)	
	1.000	User	-	30	0.043	0.013	0.013	
		User	-	100	0.142	0.142	0.155	
	1.001	-	-	100	0.000	0.000	0.000	
	1.002	User	-	100	0.090	0.090	0.090	
		User	-	30	0.079	0.024	0.114	
	1.003	-	-	100	0.000	0.000	0.000	
	2.000		-	30	0.083	0.025	0.025	
	2.001	User	-	30	0.163	0.049	0.049	
	2.002	-	-	100	0.000	0.000	0.000	
	2.003		-	30	0.104	0.031	0.031	
	3.000		-	30	0.138	0.041	0.041	
	3.001		-	30	0.106	0.032	0.032	
	3.002		-	30	0.049	0.015	0.015	
	3.003		-	30	0.042	0.013	0.013	
	3.004	-	-	100	0.000	0.000	0.000	
	3.005	-	-	100	0.000	0.000	0.000	
	3.006 2.004	User -	_	30 100	0.087	0.026	0.026 0.000	
	1.004		_	100	0.000	0.000	0.000	
	1.004	User	_	30	0.081	0.081	0.085	
	1.005		_	100	0.079	0.024	0.046	
	1.005		_	100	0.040	0.040	0.047	
	1.000		_	100	0.047	0.047	0.036	
	1.008		_	100	0.030	0.030	0.174	
	1.009	- 0501	_	100	0.000	0.000	0.000	
	1.010		_	100	0.224	0.224	0.224	
	1.011		_		0.136	0.136	0.136	
	1.012		-		0.174	0.174	0.174	
					2015 XP So			

Ove Arup & Partners International Ltd								Page 2
The Arup Campus								
Blyth Gate								2
Solihull B90 8AE								Micro
Date 13/03/2017 10:58			ſ	Desiar	ned by vero	nika stovano	ova	WILLU
File Woodsmith Mine Phase 3 Rev A for Pl	anning mdx			-	ed by			Drainage
(P Solutions	anning.max				ork 2015.1			
				VCLWO	11 2013.1			
		<u>A</u>	<u>rea Sι</u>	umma	ry for Phase	e 3 Northern	L	
	Pipe			PIMP	Gross	Imp.	Pipe Total	
	Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)	
	1.013	User	_	100	0.181	0.181	0.181	
	1.014		-	100	0.199	0.199	0.199	
	1.015	-	-	100	0.000	0.000	0.000	
	1.016	User	-	100	0.274	0.274	0.274	
	1.017	User	-	100	0.288	0.288	0.288	
	4.000	User	-	100	0.025	0.025	0.025	
	4.001	User	-	100	0.018	0.018	0.018	
	4.002	User	-	100	0.036	0.036	0.036	
	4.003	User	-	100	0.027	0.027	0.027	
	4.004	User	-	100	0.009	0.009	0.009	
		User	-		0.037	0.037	0.046	
	4.005	User	-	100	0.046	0.046	0.046	
		User	-	100	0.092	0.092	0.139	
	4.006	User	-	100	0.051	0.051	0.051	
		User	-	100	0.076	0.076	0.127	
	4.007	User	-	100	0.049	0.049	0.049	
		User	-	100	0.062	0.062	0.111	
	4.008		-	100	0.020	0.020	0.020	
	4.009		-		0.040	0.040	0.040	
		User	-	100	0.094	0.094	0.134	
	4.010		-	100	0.039	0.039	0.039	
		User	-	100	0.085	0.085	0.123	
	4.011		-	100	0.031	0.031	0.031	
		User	-	100	0.073	0.073	0.104	
	5.000		-	100	0.199	0.199	0.199	
	5.001		-	100	0.228	0.228	0.228	
	5.002		-		0.240	0.240	0.240	
	6.000	User	-	100	0.148	0.148	0.148	
			6	1082 (2015 XP So	lutions		


Ove Arup & Partners International Ltd								Page 3
The Arup Campus								
Blyth Gate								4
Solihull B90 8AE								Micro
Date 13/03/2017 10:58			ſ	Desiar	ned by vero	nika.stoyan	ova	MICLO
File Woodsmith Mine Phase 3 Rev A	for Planning mdy			-	ed by			Drainage
(P Solutions	ior r larning.max				rk 2015.1			
				101110	111 2010.1			
		<u>A</u>	<u>rea Sı</u>	<u>ımma</u>	ry for Phase	e 3 Northern	<u>l</u>	
	Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total	
	Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)	
	6.001	User	_	100	0.152	0.152	0.152	
	5.003		-	100	0.164	0.164	0.164	
	7.000	User	-	100	0.148	0.148	0.148	
	7.001	User	-	100	0.148	0.148	0.148	
	5.004	User	-	100	0.168	0.168	0.168	
	8.000	User	-	100	0.153	0.153	0.153	
	8.001	User	-	100	0.140	0.140	0.140	
	5.005	User	-	100	0.165	0.165	0.165	
	9.000	User	-	100	0.149	0.149	0.149	
	9.001	User	-	100	0.129	0.129	0.129	
	9.002	User	-	100	0.080	0.080	0.080	
	9.003	User	-	100	0.039	0.039	0.039	
	10.000	User	-	100	0.034	0.034	0.034	
	10.001	User	-	100	0.032	0.032	0.032	
	10.002	User	-	100	0.089	0.089	0.089	
	10.003	-	-	100	0.000	0.000	0.000	
	10.004	-	-	100	0.000	0.000	0.000	
	11.000	User	-	30	0.011	0.003	0.003	
	11.001	User	-	30	0.028	0.008	0.008	
	11.002	User	-	30	0.033	0.010	0.010	
	11.003		-	30	0.017	0.005	0.005	
	11.004	User	-	30	0.036	0.011	0.011	
	11.005		-	30	0.047	0.014	0.014	
	11.006	User	-	30	0.030	0.009	0.009	
	11.007		-	30	0.009	0.003	0.003	
	12.000		-	30	0.043	0.013	0.013	
	12.001	User	-	30	0.052	0.016	0.016	
	12.002	User	-	30	0.038	0.011	0.011	
				1002	2015 XP So	lutions		


Ove Arup & Partners International Ltd								Page 4
he Arup Campus								Concernant (
Blyth Gate								4
Solihull B90 8AE								Mission
Date 13/03/2017 10:58			Г	Desiar	ned by vero	nika stovan	ova	Micio
File Woodsmith Mine Phase 3 Rev A for Planning.	mdy				ed by	inta.otoyan		Drainage
KP Solutions	mux				ork 2015.1			
CF Solutions				NELWO	1K 2013.1			
		<u>A</u>	<u>rea Su</u>	umma	ry for Phase	e 3 Northerr	1	
	Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total	
:	Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)	
	12.003	User	_	30	0.018	0.005	0.005	
		User	-	30	0.010	0.003		
	11.008		-	30	0.016	0.005	0.005	
	11.009	User	-	30	0.026	0.008	0.008	
	11.010	User	-	30	0.085	0.026	0.026	
	11.011	User	-	30	0.050	0.015	0.015	
	13.000	User	-	30	0.019	0.006	0.006	
	13.001	User	-	30	0.017	0.005	0.005	
	13.002		-	30	0.079	0.024	0.024	
	13.003		-	30	0.042	0.013		
	13.004		-	30	0.041	0.012		
	11.012	-	-	100	0.000	0.000	0.000	
	10.005		-	100	0.127	0.127		
	10.006		-	100	0.052	0.052		
	10.007		-	100	0.048	0.048	0.048	
	10.008		-		0.049	0.049	0.049	
	10.009		-	100	0.045	0.045	0.045	
	10.010		-	100	0.050	0.050	0.050	
	10.011		-	100	0.042	0.042		
	10.012		-	100	0.052	0.052		
	10.013		-		0.093	0.093		
	5.006		-	100	0.016	0.016		
	5.007		-	100	0.116	0.116		
	5.008		-	100 100	0.094	0.094	0.094	
	14.000		_		0.042 0.146	0.042 0.146		
			_					
	14.001		_	100 100	0.182 0.098	0.182	0.182 0.098	
	10.000	USEL			2015 XP So		0.000	


Ove Arup & Partners International Ltd								Page 5
The Arup Campus								
Blyth Gate								L.
Solihull B90 8AE								Micro
Date 13/03/2017 10:58			ſ	Desiar	ned by vero	nika stovano	ova	WILLU
File Woodsmith Mine Phase 3 Rev A f	or Planning mdy				ed by			Drainage
(P Solutions	or r lanning.max				rk 2015.1			
				VCLWO	11 2010.1			
		<u>A</u>	rea Su	umma	ry for Phase	e 3 Northern	1	
	Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total	
	Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)	
	14.002	User	_	100	0.149	0.149	0.149	
	17.000		-	100	0.096	0.096	0.096	
	14.003		-		0.152	0.152	0.152	
	5.009	User	-	100	0.055	0.055	0.055	
	4.012	User	-	100	0.025	0.025	0.025	
		User	-	100	0.080	0.080	0.106	
	4.013	-	-	100	0.000	0.000	0.000	
	4.014	User	-	100	0.060	0.060	0.060	
	4.015	User	-	100	0.040	0.040	0.040	
	4.016	User	-	100	0.061	0.061	0.061	
	1.018	User	-	100	0.279	0.279	0.279	
		User	-	100	0.272	0.272	0.551	
	1.019	-	-	100	0.000	0.000	0.000	
	1.020	-	-	100	0.000	0.000	0.000	
	1.021	-	-	100	0.000	0.000	0.000	
	1.022	-	-	100	0.000	0.000	0.000	
	18.000		-	100	0.024	0.024	0.024	
	18.001		-	100	0.036	0.036	0.036	
	18.002		-	100	0.100	0.100	0.100	
	18.003		-	100	0.089	0.089	0.089	
	18.004		-	100	0.120	0.120	0.120	
	18.005		-		0.120	0.120	0.120	
	18.006		-	100	0.143	0.143	0.143	
	18.007		-	100	0.288	0.288	0.288	
	18.008		-	100	0.397	0.397	0.397	
	19.000		-	100	0.034	0.034	0.034	
	19.001		-		0.096	0.096	0.096	
	19.002	User	-	100	0.124	0.124	0.124	
			<u> </u>	1082 1	2015 XP So	lutions		


Ove Arup & Partners International	Ltd							Page 6
The Arup Campus								
Blyth Gate								L.
Solihull B90 8AE								Micro
Date 13/03/2017 10:58			1	Desia	ned by vero	nika stovano	va	Mirin
File Woodsmith Mine Phase 3 Rev	A for Planning mdy			-	and by	interete years		Drainage
(P Solutions	A for Flamming.max				ork 2015.1			
			- 1	VELWO	IK 2013.1			
		<u>A</u>	<u>rea Su</u>	umma	ry for Phase	e 3 Northern	L	
	Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total	
	Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)	
	19.003	User	-	100	0.070	0.070	0.070	
	19.004		-	100	0.116	0.116	0.116	
	19.005		-		0.163	0.163	0.163	
	19.006	User	-	100	0.189	0.189	0.189	
	19.007	User	-	100	0.227	0.227	0.227	
	19.008	User	-	100	0.251	0.251	0.251	
	19.009	User	-	100	0.321	0.321	0.321	
	19.010	User	-	100	0.394	0.394	0.394	
	18.009	User	-	100	0.385	0.385	0.385	
	18.010	-	-	100	0.000	0.000	0.000	
	18.011	-	-	100	0.000	0.000	0.000	
	18.012	-	-	100	0.000	0.000	0.000	
	18.013	-	-	100	0.000	0.000	0.000	
	18.014	-	-	100	0.000	0.000	0.000	
	18.015	-	-	100	0.000	0.000	0.000	
	1.023	-	-	100	0.000	0.000	0.000	
	1.024	-	-	100	0.000	0.000	0.000	
	1.025	-	-	100	0.000	0.000	0.000	
	1.026	-	-	100	0.000	0.000	0.000	
	1.027	-	-	100	0.000	0.000	0.000	
	1.028	-	-	100	0.000	0.000	0.000	
	1.029	-	-	100	0.000	0.000	0.000	
	1.030	-	-	100	0.000	0.000	0.000	
	1.031	-	-	100	0.000	0.000	0.000	
	1.032	User	-	100	0.093	0.093	0.093	
	1.033	-	-	100	0.000	0.000	0.000	
	20.000	User	-	30	0.771	0.231	0.231	
	20.001	User	-	80	0.070	0.056	0.056	
				1000	2015 XP So	1		

Pipe Number 20.002 21.000 21.001 21.002 21.003 21.003 21.004 21.005	PIMP Type User User User User	rea S	Check Netwo umma PIMP (%) 80 30 30 30 30 30	Area (ha) 0.072 0.389 0.244 0.374 0.530	e 3 Northerr Imp. Area (ha) 0.058	Pipe Total (ha) 0.058 0.174 0.073 0.112	Micro Drainage
Pipe Number 20.002 21.000 21.001 21.002 21.003 21.004	PIMP Type User User User User	rea S PIMP Name - - - - -	Check Netwo umma PIMP (%) 80 30 30 30 30 30	eed by ork 2015.1 Gross Area (ha) 0.072 0.389 0.244 0.374 0.530	E 3 Northerr Imp. Area (ha) 0.058 0.117 0.073 0.112	Pipe Total (ha) 0.058 0.174 0.073 0.112	
Pipe Number 20.002 21.000 21.001 21.002 21.003 21.004	PIMP Type User User User User	rea S PIMP Name - - - - -	Check Netwo umma PIMP (%) 80 30 30 30 30 30	eed by ork 2015.1 Gross Area (ha) 0.072 0.389 0.244 0.374 0.530	E 3 Northerr Imp. Area (ha) 0.058 0.117 0.073 0.112	Pipe Total (ha) 0.058 0.174 0.073 0.112	
Pipe Number 20.002 21.000 21.001 21.002 21.003 21.004	PIMP Type User User User User	rea S PIMP Name - - - - -	Check Netwo umma PIMP (%) 80 30 30 30 30 30	eed by ork 2015.1 Gross Area (ha) 0.072 0.389 0.244 0.374 0.530	E 3 Northerr Imp. Area (ha) 0.058 0.117 0.073 0.112	Pipe Total (ha) 0.058 0.174 0.073 0.112	
Pipe Number 20.002 21.000 21.001 21.002 21.003 21.004	PIMP Type User User User User	rea S PIMP Name - - - - -	Check Netwo umma PIMP (%) 80 30 30 30 30 30	eed by ork 2015.1 Gross Area (ha) 0.072 0.389 0.244 0.374 0.530	E 3 Northerr Imp. Area (ha) 0.058 0.117 0.073 0.112	Pipe Total (ha) 0.058 0.174 0.073 0.112	Urainage
Pipe Number 20.002 21.000 21.001 21.002 21.003 21.004	PIMP Type User User User User	rea S PIMP Name - - - - -	Netwo umma pimp (%) 30 30 30 30 30	rk 2015.1 Gross Area (ha) 0.072 0.389 0.244 0.374 0.530	Imp. Area (ha) 0.058 0.117 0.073 0.112	Pipe Total (ha) 0.058 0.174 0.073 0.112	
Number 20.002 21.000 21.001 21.002 21.003 21.004	PIMP Type User User User User	rea S PIMP Name - - - - - -	umma PIMP (%) 30 30 30 30 30	Gross Area (ha) 0.072 0.389 0.244 0.374 0.530	Imp. Area (ha) 0.058 0.117 0.073 0.112	Pipe Total (ha) 0.058 0.174 0.073 0.112	
Number 20.002 21.000 21.001 21.002 21.003 21.004	PIMP Type User User User User	PIMP Name - - - - -	PIMP (%) 80 30 30 30 30 30	Gross Area (ha) 0.072 0.389 0.244 0.374 0.530	Imp. Area (ha) 0.058 0.117 0.073 0.112	Pipe Total (ha) 0.058 0.174 0.073 0.112	
Number 20.002 21.000 21.001 21.002 21.003 21.004	Type User User User User -	Name - - - -	(%) 80 30 30 30 30	Area (ha) 0.072 0.389 0.244 0.374 0.530	Area (ha) 0.058 0.117 0.073 0.112	(ha) 0.058 0.174 0.073 0.112	
20.002 21.000 21.001 21.002 21.003 21.004	User User User User User	- - - -	80 30 30 30 30	0.072 0.389 0.244 0.374 0.530	0.058 0.117 0.073 0.112	0.058 0.174 0.073 0.112	
21.000 21.001 21.002 21.003 21.004	User User User User	- - -	30 30 30 30	0.389 0.244 0.374 0.530	0.117 0.073 0.112	0.174 0.073 0.112	
21.000 21.001 21.002 21.003 21.004	User User User User	- - -	30 30 30 30	0.389 0.244 0.374 0.530	0.117 0.073 0.112	0.174 0.073 0.112	
21.001 21.002 21.003 21.004	User User User -	- - -	30 30 30	0.244 0.374 0.530	0.073 0.112	0.073 0.112	
21.001 21.002 21.003 21.004	User User -	-	30 30	0.374 0.530	0.112	0.112	
21.003 21.004	-	-		0.530			
21.004			100	0 000		0.159	
	-			0.000	0.000	0.000	
21.005		-	100	0.000	0.000	0.000	
	User	-	80	0.309	0.247	0.247	
	User	-				0.404	
20.003	User	-			0.193	0.193	
	User	-					
	User						
1.034							
1 0 2 5							
T.032							
1 036							
1.000							
1.037							
2.007							
			2.0	Total	Total	Total	
				25.380		17.390	
	20.004 20.005 1.034 1.035 1.036	User User User 20.004 User	User - User - User - 20.004 User - 20.005 - 1.034 User - User - 1.035 User - User - 1.036 User - User - 1.037 User -	User - 80 User - 80 User - 30 User - 30 20.004 User - 100 20.005 100 1.034 User - 100 User - 30 1.035 User - 100 User - 30 1.036 User - 30 User - 100 1.037 User - 100	User - 80 0.179 User - 80 0.178 User - 30 1.866 User - 30 0.776 20.004 User - 100 0.171 20.005 100 0.000 1.034 User - 100 0.458 User - 30 3.178 1.035 User - 100 0.320 User - 30 0.256 1.036 User - 30 0.183 User - 100 0.218 1.037 User - 100 0.170 User - 30 0.300 Total	User - 80 0.179 0.144 User - 80 0.178 0.143 User - 30 1.866 0.560 User - 30 0.776 0.233 20.004 User - 100 0.171 0.171 20.005 100 0.000 0.000 1.034 User - 100 0.458 0.458 User - 30 3.178 0.953 1.035 User - 100 0.320 0.320 User - 30 0.256 0.077 1.036 User - 30 0.183 0.055 User - 100 0.218 0.218 1.037 User - 100 0.170 0.170 User - 30 0.300 0.090 Total Total	User-80 0.179 0.144 0.336 User-80 0.178 0.143 0.479 User-30 1.866 0.560 1.039 User-30 0.776 0.233 1.272 20.004User- 100 0.171 0.171 0.171 20.005 100 0.000 0.000 0.000 1.034 User- 100 0.458 0.458 0.458 User- 30 3.178 0.953 1.411 1.035 User- 100 0.320 0.320 0.320 User- 30 0.256 0.077 0.397 1.036 User- 30 0.183 0.055 0.055 User- 100 0.218 0.218 0.273 1.037 User- 100 0.170 0.170 User- 30 0.300 0.090 0.260 TotalTotalTotalTotal

Ove Arup & Partners International Ltd		Page 1
The Arup Campus Blyth Gate Solihull B90 8AE		Micco
Date 13/03/2017 11:38	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Drainage
XP Solutions	Network 2015.1	
STORM SEV	VER DESIGN by the Modified Rational Method	
De	esign Criteria for Phase 3 Southern	
Pipe Si	zes STANDARD Manhole Sizes STANDARD	
	FEH Rainfall Model	
Return Period (years) 20		op Height (m) 1.500
	ximum Rainfall (mm/hr) 100 Min Design Depth for Opt:	
C (1km) -0.022 Maximum Time o		
D1 (1km) 0.374 D2 (1km) 0.409 Vo	Foul Sewage (1/s/ha) 0.000 Min Slope for Optim: lumetric Runoff Coeff. 0.750	isation (1:X) 500
	w / Climate Change (%) 0	
	um Backdrop Height (m) 0.200	
	Designed with Level Inverts	
Netwo	ork Design Table for Phase 3 Southern	
« -	- Indicates pipe capacity < flow	
PN Length Fall Slope (m) (m) (1:X)		
	Network Results Table	
PN Rain T.C. US/IL (mm/hr) (mins) (m)	Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (ha) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)	
	©1982-2015 XP Solutions	

Ove Arup & Partners International Ltd											F	Page 2
The Arup Campus												
Blyth Gate												L
Solihull B90 8AE												Micro
Date 13/03/2017 11:38				Desig	ned by v	/eronika.s	tovano	va				Desinance
File Woodsmith Mine Phase 3 Rev A fo	r Planning.m	dx		Check			,					Drainage
XP Solutions					ork 2015	.1						
		<u>N</u>	letwork E	Design [·]	Table fo	r Phase 3	South	<u>ern</u>				
PN	Length	Fall	Slope 1	.Area	T.E.	Base	k	n	HYD	DIA	Auto	
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1	/s) (mu	n)	SECT	(mm) I	Design	
DH3-9-1	.000 44.121	0 400	110 3	0.018	5.00		0.0	0.117	3 \=/	500		
1115 5 1	.000 44.121	0.400	110.5	0.010	5.00			0.11/	5 (-/	500	•	
PH3-S-2	.000 21.904	0.400	54.8	0.024	5.00		0.0	0.117	3 \=/	500	A	
											-	
	.001 32.461			0.069	0.00		0.0	0.117		500	0	
	.002 30.397			0.119	0.00		0.0	0.117			0	
	.003 46.470			0.102	0.00		0.0	0.117		500	0	
PH3-S-1	.004 42.710	0.900	47.5	0.082	0.00		0.0	0.117	3 \=/	500	0	
PH3-S-3	.000 30.000	0.200	150.0	0.022	5.00		0.0	0.117	3 \=/	500	•	
	.001 30.000			0.046	0.00		0.0	0.117			Ă	
											-	
				Netwo	ork Resu	<u>ilts Table</u>						
PN	Rain	T.C.	US/IL	ΣΙ.	Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(h	a) Fl	Low (1/s)	(l/s)	(1/s)	(m/s)	(1/s) (l/s)	
PH3-S-1.(92.74	9.24	210.70	0 0	.018	0.0	0.0	0.0	0.1	7 24.	7 4.5	
PH3-S-2.(00 100.00	6.48	210.70	0 0	.024	0.0	0.0	0.0	0.25	5 35.	1 6.4	
		10.00	010 00	0	1 1 1	0.0	0.0	0.00	0.14	0.04	0 00 0	
PH3-S-1.(PH3-S-1.(210.30		.111	0.0					9 22.8 « 42.3	
PH3-S-1.(PH3-S-1.(210.00 209.50		.230	0.0					« 42.3 « 51.4	
PH3-S-1.(PH3-S-1.(209.50		.332	0.0				5 37.7		
PH3-5-1.0	JZ.07	21.29	209.00	0 0	• 4 1 4	0.0	0.0	0.0	0.20	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>(</u>)0.4	
PH3-S-3.(99.36	8.36	209.50	0 0	.022	0.0	0.0	0.0	0.15	5 21.3	2 6.0	
PH3-S-3.(209.30		.068	0.0					0 15.1	
			6	1000	201E VE	^o Solution	•					

Ove Arup & Partners International Lt	d													Page 3
The Arup Campus														
Blyth Gate														4
Solihull B90 8AE														Micro
Date 13/03/2017 11:38					Desig	ned by v	eronika.s	tovano	va					Desipado
File Woodsmith Mine Phase 3 Rev A	for Plar	nnina.mo	dx		Check	-		,						Drainage
XP Solutions		<u> </u>	-			rk 2015	.1							
				. 4	D : '			0						
			<u>N</u>	etwork I	Design	I able to	r Phase 3	South	<u>iern</u>					
:	PN	Length	Fall	-			Base	3			HYD	DIA	Auto	
		(m)	(m)	(1:X)	(ha)	(mins)	Flow (1,	's) (m	m)	1	SECT	(mm) 1	Design	
PH3-S	5-3.002	30.000	0.200	150.0	0.055	0.00	(0.0	0.13	7 3	3 \=/	500	•	
		20.000			0.063	0.00		.0			3 \=/	500	ĕ	
PH3-S	5-3.004	15.000	0.100	150.0	0.020	0.00	(0.0	0.11	L7 3	3 \=/	500	ě	
PH3-S	3-3.005	20.000	0.100	200.0	0.014	0.00	(0.0	0.11	L7 3	3 \=/	500	0	
PH3-S	5-3.006	30.000	0.080	375.0	0.014	0.00	(0.0			3 \=/	500	0	
PH3-S	5-3.007	32.000	0.100	320.0	0.058	0.00	(0.0			3 \=/	500	0	
PH3-S	5-3.008	40.000	0.120	333.3	0.056	0.00	(0.0	0.11	L7 3	3 \=/	500	.	
PH3-S	5-4.000	22.839	0.300	76.1	0.015	5.00	(0.0	0.11	L7 3	3 \=/	500	A	
PH3-S	5-4.001	19.851	0.600	33.1	0.016	0.00	(0.0	0.11	L7 3	3 \=/	500	ě	
PH3-S	5-4.002	30.527	0.700	43.6	0.019	0.00	(0.0	0.11	L7 3	3 \=/	500	0	
					Netwo	rk Resu	<u>ilts Table</u>							
PI	N	Rain	T.C.	US/II	ΣΙ.	Area	Σ Base	Foul	Add F	low	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(h	a) Fl	.ow (1/s)	(l/s)) (1/s	3)	(m/s)	(1/s	s) (l/s)	
PH3-S-	3.002	68.01	14.47	209.00	0 0	.123	0.0	0.0)	0.0	0.15	21.2	× 22.7	
PH3-S-	3.003	60.70	17.06	208.80	0 0	.186	0.0	0.0)	0.0	0.13	3 18.4	« 30.6	
PH3-S-	3.004	56.88	18.74	208.70	0 0	.206	0.0	0.0)	0.0	0.15	5 21.2	.« 31.8	
PH3-S-		52.01		208.60		.220	0.0	0.0		0.0		3 18.4		
PH3-S-	3.006	44.60	26.64	208.50	0 0	.234	0.0	0.0		0.0			« 31.8	
PH3-S-		41.08		208.42		.293	0.0	0.0		0.0) 14.5		
PH3-S-	3.008	41.08	30.00	208.32	20 0	.348	0.0	0.0)	0.0	0.10	14.2	.« 38.8	
PH3-S-	4.000	100.00	6.82	210.60	0 0	.015	0.0	0.0)	0.0	0.21	L 29.	7 4.0	
PH3-S-	4.001	100.00	7.87	210.30	0 0	.031	0.0	0.0)	0.0	0.32	2 45.	1 8.3	
PH3-S-	4.002	89.59	9.71	209.70	0 0	.050	0.0	0.0)	0.0	0.28	3 39.	3 12.0	
					A1002 4		Solution:							

Ove Arup & Partners International L	_td												Page 4
The Arup Campus													
Blyth Gate													4
Solihull B90 8AE													Micco
Date 13/03/2017 11:38					Desig	ned by	veronika.s	toyano	va				- MILIU Desinareo
File Woodsmith Mine Phase 3 Rev	A for Pla	nnina.m	dx		-	ked by		-					Drainage
XP Solutions		0	-			ork 201	5.1						
			<u>N</u>	letwork	Design	Table for	or Phase 3	South	<u>ern</u>				
	PN	Length	Fall	Slope	I.Area	T.E.	Base	ł	c n	HYD	DIA	Auto	
		(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/	s) (m	m)	SECT	(mm) I	Design	
PH3-	s-4.003	31.868	0.300	106.2	0.054	0.00	0	.0	0.117	3 \=/	500	•	
PH3-	s-4.004	35.497	0.500	71.0	0.080	0.00		.0	0.117		500	ă	
												-	
	s-3.009				0.107	0.00		.0	0.117		500	8	
	s-3.010				0.000	0.00		.0 0.6		0	220	0	
	s-3.011				0.000	0.00		.0 0.6		0	225	8	
PH3-	S-3.012	42.343	0.140	302.5	0.000	0.00	0	.0 0.6	500	0	225	8	
PH3-	s-3.013	3.809	0.010	380.9	0.000	0.00	0	.0 0.6	500	0	225	ē	
PH3-	s-1.005	46.003	2.000	23.0	0.122	0.00	0	.0	0.117	3 \=/	500	•	
					Netw	ork Res	ults Table						
1	PN	Rain	T.C.	US/1	ί ΣΙ	.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
		(mm/hr)	(mins)	•			low (l/s)				-	(1/s)	
рнз-с	-4.003	74.36	12.72	209.0	000	0.104	0.0	0.0	0.0	0.18	25.2	20.9	
	-4.004	64.98		5 208.7		0.183	0.0				30.8«		
	-3.009	41.08		208.2		0.638	0.0				13.9«		
PH3-S	-3.010	41.08	30.00	208.4	150 (0.638	0.0	0.0	0.0	0.66	25.0«	71.0	
PH3-S	-3.011	41.08		208.3		0.638	0.0	0.0	0.0			71.0	
PH3-S	-3.012	41.08	30.00	208.2	250 (0.638	0.0	0.0	0.0	0.75	29.7«	71.0	
PH3-S	-3.013	41.08	30.00	208.1	10 (0.638	0.0	0.0	0.0	0.66	26.4«	71.0	
PH3-S	-1.005	41.08	30.00	208.1	.00	1.175	0.0	0.0	0.0	0.38	54.1«	130.7	
					©1982-	-2015 X	P Solution	s					

Ove Arup & Partners International Ltd													Page 5
he Arup Campus													
Blyth Gate													Ly
Solihull B90 8AE													Micro
Date 13/03/2017 11:38				Desig	ned by	veronika.	stoya	nova					Drainage
File Woodsmith Mine Phase 3 Rev A for P	lanning.m	ndx		Chec	ked by								Drainage
XP Solutions				Netwo	ork 201	5.1							
		N	lotuork	Decian	Table f		2 6 6 1	thorn					
		<u>r</u>	Network	Design	Table to	or Phase :	3 500	Inem	<u>1</u>				
PN	Length	Fall	Slope	I.Area		Base		k	n	HYD	DIA	Auto	
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1	/s)	(mm)		SECT	(mm) D	esign	
PH3-S-5.00	0 27 262	0 100	272 6	0.023	5.00		0.0		0.117	3 \=/	500	0	
PH3-S-5.00				0.023	0.00		0.0		0.117		500	•	
PH3-S-5.00				0.089	0.00		0.0		0.117		500	Ă	
PH3-S-5.00	3 23.665	0.600	39.4	0.075	0.00		0.0		0.117	3 \=/	500	ă	
PH3-S-5.00	4 22.165	0.300	73.9	0.044	0.00		0.0		0.117	3 \=/	500	ě	
PH3-S-5.00	5 33.305	0.500	66.6	0.047	0.00		0.0		0.117	3 \=/	500	.	
PH3-S-1.00	6 22.824	1.300	17.6	0.119	0.00		0.0		0.117	3 \=/	500	A	
PH3-S-1.00	7 23.359	0.800	29.2	0.000	0.00		0.0		0.117	3 \=/	500	ă	
PH3-S-1.00				0.000	0.00		0.0 0			0	375	8	
PH3-S-1.00	9 48.182	0.600	80.3	0.293	0.00		0.0 0	.600		0	375	0	
				Netwo	ork Res	ults Table							
PN	Rain	T.C.	US/I	ι ΣΙ.		Σ Base			dd Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(h	a) F1	Low (1/s)	(1/:	s)	(l/s)	(m/s)	(l/s)	(1/s)	
PH3-S-5.000	93.59	9.12	210.6	00 0	.023	0.0	0	.0	0.0	0.11	15.7	7 5.7	
PH3-S-5.001	85.03	10.48	210.5	00 0	.100	0.0	0	.0	0.0	0.37	52.1	1 23.0	
PH3-S-5.002	78.50	11.76	209.3		.189	0.0	0	.0	0.0	0.43	60.8	3 40.2	
PH3-S-5.003	72.78	13.12	207.5	00 0	.264	0.0	0	.0	0.0	0.29	41.3«	× 51.9	
PH3-S-5.004	66.76	14.86	206.9	00 0	.307	0.0		.0	0.0	0.21			
PH3-S-5.005	59.99	17.35	206.6	00 0	.354	0.0	0	.0	0.0	0.22	31.8«	× 57.6	
							0	.0	0.0	0.43	61 94	× 183.4	
PH3-S-1.006	41.08	30.00	206.1	00 1	.648	0.0	0	• 0	0.0	0.45	01.00	103.4	
PH3-S-1.006 PH3-S-1.007	41.08 41.08		206.1 204.8		.648 .648	0.0		.0	0.0	0.43		× 183.4	
		30.00		00 1			0			0.34	48.0«		

Ove Arup & Partners International Ltd		Page 6
The Arup Campus		
Blyth Gate		4
Solihull B90 8AE		Micro
Date 13/03/2017 11:38	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Drainage
XP Solutions	Network 2015.1	·

Network Design Table for Phase 3 Southern

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s) (mm)		SECT	(mm)	Design
PH3-S-1.010	29.247	0.250	117.0	0.000	0.00	0.	0 0.600		0	225	•
PH3-S-1.011	7.734	0.050	154.7	0.000	0.00	Ο.	0 0.600		0	225	ē
PH3-S-1.012	15.445	1.000	15.4	0.000	0.00	Ο.	0	0.117	1.5 _/	500	Ā
PH3-S-1.013	16.959	0.500	33.9	0.000	0.00	0.	0	0.117	1.5 \ /	500	Ā
PH3-S-1.014	19.325	0.100	193.3	0.000	0.00	0.	0	0.117	1.5 \ /	500	Ā
PH3-S-1.015	17.689	0.400	44.2	0.000	0.00	0.	0	0.117	1.5 \ /	500	Ā
PH3-S-1.016	17.534	1.500	11.7	0.000	0.00	Ο.	0	0.117	1.5 _/	500	Ā
PH3-S-1.017	14.246	1.500	9.5	0.000	0.00	Ο.	0	0.117	1.5 _/	500	Ā
PH3-S-1.018	17.787	1.500	11.9	0.000	0.00	0.	0	0.117	1.5 \ /	500	Ā
PH3-S-1.019	15.277	0.300	50.9	0.000	0.00	0.	0	0.117	1.5 \/	500	Ă
PH3-S-1.020	7.000	0.700	10.0	0.080	0.00	0.	0	0.117	_	5000	ě

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
PH3-S-1.010	41.08	30.00	202.300	1.941	0.0	0.0	0.0	1.21	48.0«	216.0
PH3-S-1.011	41.08	30.00	202.050	1.941	0.0	0.0	0.0	1.05	41.7«	216.0
PH3-S-1.012	41.08	30.00	202.000	1.941	0.0	0.0	0.0	0.69	197.7«	216.0
PH3-S-1.013	41.08	30.00	201.000	1.941	0.0	0.0	0.0	0.47	133.5«	216.0
PH3-S-1.014	41.08	30.00	200.500	1.941	0.0	0.0	0.0	0.20	55.9«	216.0
PH3-S-1.015	41.08	30.00	200.400	1.941	0.0	0.0	0.0	0.41	116.9«	216.0
PH3-S-1.016	41.08	30.00	200.000	1.941	0.0	0.0	0.0	0.80	227.3	216.0
PH3-S-1.017	41.08	30.00	198.500	1.941	0.0	0.0	0.0	0.88	252.2	216.0
PH3-S-1.018	41.08	30.00	197.000	1.941	0.0	0.0	0.0	0.79	225.7	216.0
PH3-S-1.019	41.08	30.00	195.500	1.941	0.0	0.0	0.0	0.38	108.9«	216.0
PH3-S-1.020	41.08	30.00	195.700	2.021	0.0	0.0	0.0	1.12	1684.6	224.9
			©.	1982-2015	XP Solution	S				

ed by veronika.stoyanova ed by k 2015.1 ximum Level (Rank 1) for Phase 3 Southern ation Criteria ff (Global) 0.500 MADD Factor * 10m³/ha ctare (1/s) 0.000 Inlet Coeff Total Flow 0.000 Flow per Person per Day (1/p Offline Controls 0 Number of Time/Area Diagra torage Structures 2 Number of Real Time Contro Rainfall Details 2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.750 8 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 a) 100.0 DTS Status ON Inertia Status ON ep Fine DVD Status ON	iecient 0.800 er/day) 0.000 ms 0
ed by k 2015.1 ximum Level (Rank 1) for Phase 3 Southern ation Criteria ff (Global) 0.500 MADD Factor * 10m ³ /ha ctare (1/s) 0.000 Inlet Coeff Total Flow 0.000 Flow per Person per Day (1/p Offline Controls 0 Number of Time/Area Diagra torage Structures 2 Number of Real Time Contro Rainfall Details 2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.750 3 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 n) 100.0 DTS Status ON Inertia Status ON	Storage 2.000 iecient 0.800 er/day) 0.000 ms 0
ed by k 2015.1 ximum Level (Rank 1) for Phase 3 Southern ation Criteria ff (Global) 0.500 MADD Factor * 10m ³ /ha ctare (1/s) 0.000 Inlet Coeff Total Flow 0.000 Flow per Person per Day (1/p Offline Controls 0 Number of Time/Area Diagra torage Structures 2 Number of Real Time Contro Rainfall Details 2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.750 3 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 n) 100.0 DTS Status ON Inertia Status ON	Storage 2.000 iecient 0.800 er/day) 0.000 ms 0
ed by k 2015.1 ximum Level (Rank 1) for Phase 3 Southern ation Criteria ff (Global) 0.500 MADD Factor * 10m ³ /ha ctare (1/s) 0.000 Inlet Coeff Total Flow 0.000 Flow per Person per Day (1/p Offline Controls 0 Number of Time/Area Diagra torage Structures 2 Number of Real Time Contro Rainfall Details 2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.750 3 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 n) 100.0 DTS Status ON Inertia Status ON	Storage 2.000 iecient 0.800 er/day) 0.000 ms 0
k 2015.1 ximum Level (Rank 1) for Phase 3 Southern ff (Global) 0.500 MADD Factor * 10m ³ /ha ctare (1/s) 0.000 Inlet Coeff Total Flow 0.000 Flow per Person per Day (1/p Offline Controls 0 Number of Time/Area Diagra torage Structures 2 Number of Real Time Contro Rainfall Details 2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.750 3 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 n) 100.0 DTS Status ON Inertia Status ON	Storage 2.000 iecient 0.800 er/day) 0.000 ms 0
ximum Level (Rank 1) for Phase 3 Southern ation Criteria ff (Global) 0.500 MADD Factor * 10m ³ /ha ctare (1/s) 0.000 Inlet Coeff Total Flow 0.000 Flow per Person per Day (1/p Offline Controls 0 Number of Time/Area Diagra torage Structures 2 Number of Real Time Contro Rainfall Details 2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.750 3 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 n) 100.0 DTS Status ON Inertia Status ON	iecient 0.800 er/day) 0.000 ms 0
Ation Criteria ff (Global) 0.500 MADD Factor * 10m ³ /ha ctare (1/s) 0.000 Inlet Coeff Total Flow 0.000 Flow per Person per Day (1/p Offline Controls 0 Number of Time/Area Diagra torage Structures 2 Number of Real Time Contro <u>Rainfall Details</u> 2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.750 3 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 n) 100.0 DTS Status ON Inertia Status ON	iecient 0.800 er/day) 0.000 ms 0
Ation Criteria ff (Global) 0.500 MADD Factor * 10m ³ /ha ctare (1/s) 0.000 Inlet Coeff Total Flow 0.000 Flow per Person per Day (1/p Offline Controls 0 Number of Time/Area Diagra torage Structures 2 Number of Real Time Contro <u>Rainfall Details</u> 2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.750 3 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 n) 100.0 DTS Status ON Inertia Status ON	iecient 0.800 er/day) 0.000 ms 0
ff (Global) 0.500MADD Factor * 10m³/hactare (1/s) 0.000Inlet CoeffTotal Flow 0.000 Flow per Person per Day (1/pOffline Controls 0 Number of Time/Area Diagratorage Structures 2 Number of Real Time ControRainfall Details2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.7503 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840n) 100.0 DTS Status ON Inertia Status ON	iecient 0.800 er/day) 0.000 ms 0
ff (Global) 0.500MADD Factor * 10m³/hactare (1/s) 0.000Inlet CoeffTotal Flow 0.000 Flow per Person per Day (1/pOffline Controls 0 Number of Time/Area Diagratorage Structures 2 Number of Real Time ControRainfall Details2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.7503 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840n) 100.0 DTS Status ON Inertia Status ON	iecient 0.800 er/day) 0.000 ms 0
ctare (1/s) 0.000Inlet CoeffTotal Flow 0.000 Flow per Person per Day (1/pOffline Controls 0 Number of Time/Area Diagratorage Structures 2 Number of Real Time ControRainfall Details2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.7503 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840n) 100.0 DTS Status ON Inertia Status ON	iecient 0.800 er/day) 0.000 ms 0
Total Flow 0.000 Flow per Person per Day (1/p Offline Controls 0 Number of Time/Area Diagra torage Structures 2 Number of Real Time Contro <u>Rainfall Details</u> 2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.750 3 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 n) 100.0 DTS Status ON Inertia Status ON	er/day) 0.000 ms 0
torage Structures 2 Number of Real Time Contro <u>Rainfall Details</u> 2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.750 3 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 n) 100.0 DTS Status ON Inertia Status ON	
torage Structures 2 Number of Real Time Contro <u>Rainfall Details</u> 2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.750 3 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 n) 100.0 DTS Status ON Inertia Status ON	
Rainfall Details 2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.750 3 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 n) 100.0 DTS Status ON Inertia Status ON	
2 (1km) 0.409 E (1km) 0.288 Cv (Summer) 0.750 3 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 n) 100.0 DTS Status ON Inertia Status ON	
 (1km) 0.270 F (1km) 2.381 Cv (Winter) 0.840 n) 100.0 DTS Status ON Inertia Status ON 	
n) 100.0 DTS Status ON Inertia Status ON	
ep Fine DVD Status ON	
Summer and W	
.80, 240, 360, 480, 600, 720, 960, 1440, 2160,	-
4320, 5760, 7200, 8640,	20
	0
Natan Elected Menimum Dias	
Water Flooded Maximum Pipe Level Volume Velocity Flow	
(m) (m^3) (m/s) $(1/s)$ Status	
1+0% 210.801 0.000 0.1 5.0 0K 1+0% 210.798 0.000 0.1 6.9 0K 1+0% 210.645 0.000 0.3 11.9 0K	
	Level Volume Velocity Flow

Ove Arup & Partners International Ltd		Page 8
The Arup Campus		Concernance of the
Blyth Gate		L.
Solihull B90 8AE		Micro
Date 13/03/2017 11:38	Designed by veronika.stoyanova	Desinado
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamage
XP Solutions	Network 2015.1	·

Summary of Critical Results by Maximum Level (Rank 1) for Phase 3 Southern

		Water Level		Maximum Velocity	-	
PN	Event	(m)	(m ³)	(m/s)	(1/s)	Status
PH3-S-1.002	15 minute 20 year Winter I+0%	210.343	0.000	0.5	27.8	OK
PH3-S-1.003	15 minute 20 year Winter I+0%	209.859	0.000	0.4	44.9	OK
PH3-S-1.004	15 minute 20 year Winter I+0%	209.365	0.000	0.5	52.6	OK
PH3-S-3.000	15 minute 20 year Winter I+0%	209.621	0.000	0.1	6.5	OK
PH3-S-3.001	15 minute 20 year Winter I+0%	209.474	0.000	0.1	16.8	OK
PH3-S-3.002	600 minute 20 year Winter I+0%	209.455	0.000	0.1	2.3	FLOOD RISK*
PH3-S-3.003	600 minute 20 year Winter I+0%	209.154	0.000	0.0	3.1	OK
PH3-S-3.004	600 minute 20 year Winter I+0%	209.153	0.000	0.1	2.8	FLOOD RISK*
PH3-S-3.005	600 minute 20 year Winter I+0%	208.852	0.000	0.0	3.0	OK
PH3-S-3.006	600 minute 20 year Winter I+0%	208.850	0.000	0.0	3.2	OK
PH3-S-3.007	600 minute 20 year Winter I+0%	208.849	0.000	0.0	4.0	OK
PH3-S-3.008	600 minute 20 year Winter I+0%	208.848	0.000	0.0	4.9	OK
PH3-S-4.000	15 minute 20 year Winter I+0%	210.681	0.000	0.1	4.3	OK
PH3-S-4.001	30 minute 20 year Winter I+0%	210.584	0.000	0.1	1.0	OK
PH3-S-4.002	30 minute 20 year Winter I+0%	210.009	0.000	0.3	3.5	OK
PH3-S-4.003	15 minute 20 year Winter I+0%	209.329	0.000	0.3	15.5	OK
PH3-S-4.004	15 minute 20 year Winter I+0%	208.920	0.000	0.1	31.0	OK
PH3-S-3.009	120 minute 20 year Winter I+0%	208.601	0.000	0.0	16.2	OK
PH3-S-3.010	120 minute 20 year Winter I+0%	208.597	0.000	0.6	15.6	OK*
PH3-S-3.011	120 minute 20 year Winter I+0%	208.558	0.000	0.4	15.7	OK
PH3-S-3.012	60 minute 20 year Winter I+0%	208.516	0.000	0.4	15.6	SURCHARGED
PH3-S-3.013	60 minute 20 year Winter I+0%	208.476	0.000	0.4	15.6	SURCHARGED
PH3-S-1.005	30 minute 20 year Winter I+0%	208.475	0.000	0.7	66.7	OK
PH3-S-5.000	15 minute 20 year Winter I+0%	210.743	0.000	0.1	6.5	OK
PH3-S-5.001	15 minute 20 year Winter I+0%	210.656	0.000	0.2	25.9	OK
PH3-S-5.002	15 minute 20 year Winter I+0%	209.661	0.000	0.8	48.6	OK
	©1982-2015	XP Solut	ions			

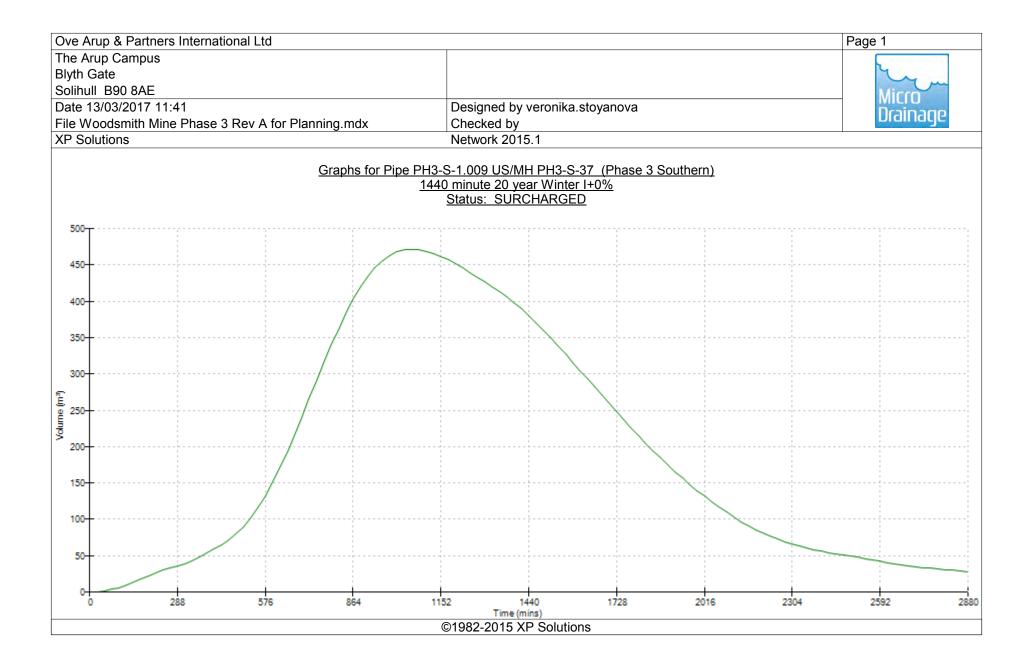
Ove Arup & Partners International Ltd		Page 9
The Arup Campus		
Blyth Gate		L.
Solihull B90 8AE		Micco
Date 13/03/2017 11:38	Designed by veronika.stoyanova	
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Diamaye
XP Solutions	Network 2015.1	

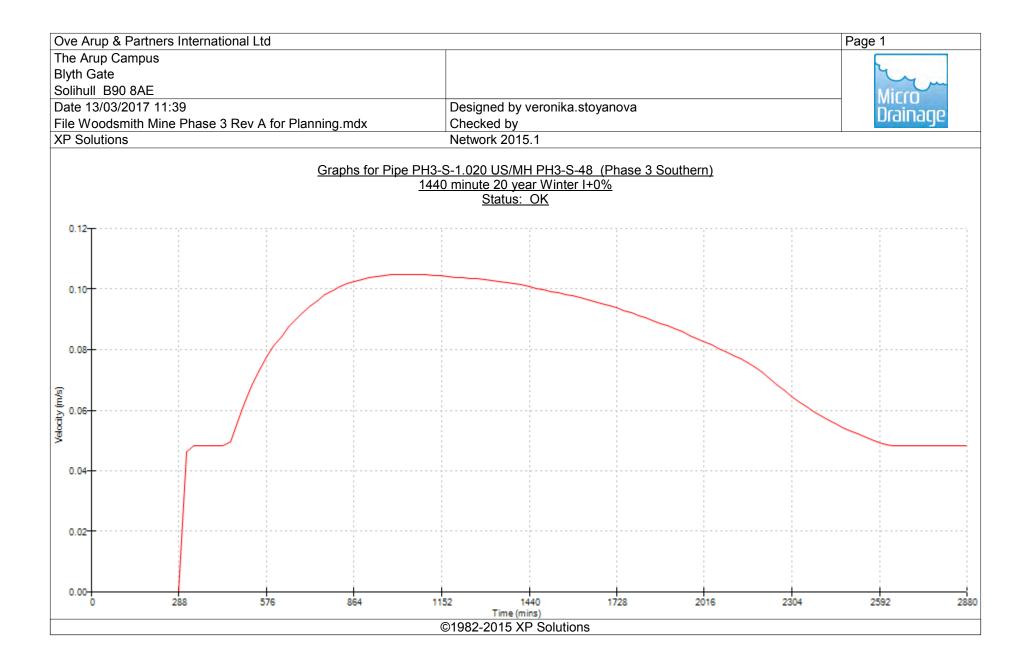
Summary of Critical Results by Maximum Level (Rank 1) for Phase 3 Southern

			Water	Flooded	Maximum	Pipe	
			Level	Volume	Velocity	Flow	
PN	Event		(m)	(m³)	(m/s)	(l/s)	Status
PH3-S-5.003 1	5 minute 20 year	Winter T+0%	207.876	0.000	0.6	67.9	OK
	5 minute 20 year				0.4		FLOOD RISK*
	5 minute 20 year			0.000	0.4	74.2	OK
	0 minute 20 year			0.000	0.4	145.6	OK
PH3-S-1.007 3	0 minute 20 year	Winter I+0%	205.224	0.000	0.8	145.0	OK
PH3-S-1.008 3	0 minute 20 year	Winter I+0%	204.342	0.000	1.4	139.1	OK*
PH3-S-1.009 144	0 minute 20 year	Winter I+0%	204.305	0.000	1.1	12.2	SURCHARGED
PH3-S-1.010 144	0 minute 20 year	Winter I+0%	202.380	0.000	1.0	12.2	OK
PH3-S-1.011 144	0 minute 20 year	Winter I+0%	202.147	0.000	0.7	12.2	OK
PH3-S-1.012 144	0 minute 20 year	Winter I+0%	202.102	0.000	0.2	12.2	OK
PH3-S-1.013 144	0 minute 20 year	Winter I+0%	201.332	0.000	0.5	12.2	OK
PH3-S-1.014 144	0 minute 20 year	Winter I+0%	200.853	0.000	0.1	12.2	OK
PH3-S-1.015 144	0 minute 20 year	Winter I+0%	200.535	0.000	0.1	12.2	OK
PH3-S-1.016 144	0 minute 20 year	Winter I+0%	200.332	0.000	0.5	12.2	OK
PH3-S-1.017 144	0 minute 20 year	Winter I+0%	198.832	0.000	0.6	12.2	OK
PH3-S-1.018 144	0 minute 20 year	Winter I+0%	197.332	0.000	0.5	12.2	OK
PH3-S-1.019 96	0 minute 20 year	Winter I+0%	195.732	0.000	0.1	12.2	OK
PH3-S-1.020 144	0 minute 20 year	Winter I+0%	195.724	0.000	0.1	12.6	OK

©1982-2015 XP Solutions

Ove Arup & Partners International Ltd		Page 1
he Arup Campus		
Blyth Gate		The main and the second
Solihull B90 8AE		Micro
Date 13/03/2017 10:19	Designed by veronika.stoyanova	Drainage
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	breintage
KP Solutions	Network 2015.1	
STORM SE	WER DESIGN by the Modified Rational Method	
<u>[</u>	Design Criteria for Phase 3 Southern	
Pipe S	Sizes STANDARD Manhole Sizes STANDARD	
	FEH Rainfall Model	
Return Period (years) 20		ckdrop Height (m) 1.500
Site Location M C (1km) -0.022 Maximum Time	aximum Rainfall (mm/hr) 100 Min Design Depth for of Concentration (mins) 30 Min Vel for Auto I	Optimisation (m) 0.500 Design only (m/s) 0.10
D1 (1km) 0.374		ptimisation $(1:X)$ 500
	olumetric Runoff Coeff. 0.750	
	ow / Climate Change (%) 0	
E (1km) 0.288 Mini	mum Backdrop Height (m) 0.200	
	Designed with Level Inverts	
	©1982-2015 XP Solutions	

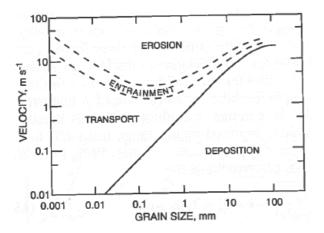

Ove Arup & Partners International L	td							Page 2
The Arup Campus								
Blyth Gate								4
Solihull B90 8AE								Micro
Date 13/03/2017 10:19			Г	Desiar	ned by vero	nika.stoyano	va	MILIU
File Woodsmith Mine Phase 3 Rev	Δ for Planning mdy			-	ed by	interete years		Drainage
(P Solutions					ork 2015.1			
CF Solutions			I	NELWO	IK 2015.1			
		<u>A</u>	rea Su	Imma	ry for Phase	e 3 Southerr	1	
	Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total	
	Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)	
	1.000	User	_	80	0.022	0.018	0.018	
	2.000		-	80	0.029	0.024	0.024	
	1.001		-	80	0.087	0.069	0.069	
	1.002	User	-	80	0.149	0.119	0.119	
	1.003	User	-	80	0.127	0.102	0.102	
	1.004	User	-	80	0.103	0.082	0.082	
	3.000	User	-	80	0.028	0.022	0.022	
	3.001	User	-	80	0.058	0.046	0.046	
	3.002	User	-	80	0.069	0.055	0.055	
	3.003		-	80	0.078	0.063	0.063	
	3.004	User	-	80	0.025	0.020	0.020	
	3.005	User	-	80	0.018	0.014	0.014	
	3.006	User	-	80	0.017	0.014	0.014	
	3.007	User	-	80	0.073	0.058	0.058	
	3.008	User	-	80	0.070	0.056	0.056	
	4.000	User	-	80	0.018	0.015	0.015	
	4.001	User	-	80	0.020	0.016	0.016	
	4.002	User	-	80	0.024	0.019	0.019	
	4.003	User	-	80	0.068	0.054	0.054	
	4.004	User	-	80	0.099	0.080	0.080	
	3.009	User	-	80	0.133	0.107	0.107	
	3.010	-	-	100	0.000	0.000	0.000	
	3.011	-	-	100	0.000	0.000	0.000	
	3.012	-	-	100	0.000	0.000	0.000	
	3.013	-	-	100	0.000	0.000	0.000	
	1.005		-	80	0.153	0.122	0.122	
	5.000	User	-	80	0.028	0.023	0.023	
	5.001	User	-	80	0.097	0.078	0.078	
					2015 XP So			


Ove Arup & Partners International Ltd		Page 3
The Arup Campus		
Blyth Gate		L.
Solihull B90 8AE		Micro
Date 13/03/2017 10:19	Designed by veronika.stoyanova	
File Woodsmith Mine Phase 3 Rev A for Planning.mdx	Checked by	Drainage
XP Solutions	Network 2015.1	

Area Summary for Phase 3 Southern

Pipe		PIMP		Gross	Imp.	Pipe Total
Number	туре	Name	(%)	Area (ha)	Area (na)	(ha)
5.002	User	-	80	0.111	0.089	0.089
5.003	User	-	80	0.093	0.075	0.075
5.004	User	-	80	0.055	0.044	0.044
5.005	User	-	80	0.059	0.047	0.047
1.006	User	-	80	0.149	0.119	0.119
1.007	-	-	100	0.000	0.000	0.000
1.008	-	-	100	0.000	0.000	0.000
1.009	User	-	100	0.232	0.232	0.232
	User	-	30	0.204	0.061	0.293
1.010	-	-	100	0.000	0.000	0.000
1.011	-	-	100	0.000	0.000	0.000
1.012	-	-	100	0.000	0.000	0.000
1.013	-	-	100	0.000	0.000	0.000
1.014	-	-	100	0.000	0.000	0.000
1.015	-	-	100	0.000	0.000	0.000
1.016	-	-	100	0.000	0.000	0.000
1.017	-	-	100	0.000	0.000	0.000
1.018	-	-	100	0.000	0.000	0.000
1.019	-	-	100	0.000	0.000	0.000
1.020	User	-	100	0.080	0.080	0.080
				Total	Total	Total
				2.576	2.021	2.021

©1982-2015 XP Solutions



Appendix E

Outfall Velocity and Silt Removal Calculations

Determination of a maximum velocity to discharge surface water into Sneaton Thorpe Beck tributaries.

The textbook "Fluvial Forms and Processes, A New Perspective" contains a graph that gives some basic limiting velocities for sediment erosion and entrainment based on various grain sizes.

The graph shows that no grain sizes are entrained into the flow until velocities are greater than 1m/s.

Using Ordnance Survey maps, topographic surveys and contours produced from lidar, Sneaton Thorpe Beck tributaries have an average gradient of approximately 1 in 20.

The tributaries of Sneaton Thorpe Beck are small. The photograph below shows the typical size of the tributaries downstream from the site. The width of the tributaries have been estimated at approximately 1m wide.

Flow monitoring has been undertaken at a number of locations on Sneaton Thorpe Beck. The monitoring data gives typical depths of flow at three monitoring points on the beck over a 4 month period. During rainfall events the depths at these monitoring points increases to about 200mm. The depths of the water in the beck will be dependent on the geometry at any specific location, but the data offers a guide to allow us to undertake some calculations. If we consider that the depth data only covers a 4 month period, we would expect increased depths during higher return period rainfall events.

Using the above information a manning's calculation was undertaken to give an indication of typical velocities in the existing beck during rainfall events:

Manning's "n" has been estimated using (Chow, 1959): 3a. Mountain Streams, no vegetation in channel, banks usually steep, with trees and brush on banks submerged. Bottom: gravels cobbles and few boulders: normal n = 0.040

Slope: 1 in 20 Width of base = 1m Depth of flow = varies

Manning's Equation

 $V = \frac{R^{2/3} S^{1/2}}{n}$

V is average velocity (m/s) R = hydraulic radius (m) S = energy slope (m/m) n = Manning's roughness coefficient

Depth of flow (mm)	Velocity (m/s)
100	1.07
200	1.53
300	1.83
400	2.05

This table gives indicative average velocities in the tributary of Sneaton Thorpe Beck downstream of the outfall during rainfall events.

The results suggest velocities ranging from about 1 m/s to 2m/s would be expected during rainfall events. Velocities nearer the upper end of this range would be expected for large storm events such as a 1 in 20year return period event.

In an email from the Environment Agency on the 18th February 2016 contained guidance notes with typical outfall structures that contained limits to the exit velocities. These were 1.2m/s for a typical outfall without a stilling basin and 1.8m/s for outfalls with a stilling basin.

Using the information above, a conservative maximum discharge velocity to set for the outfalls from the site is 1.2m/s for return periods up to the 1 in 20 year return period event.

		Job No.		She	et No.		Rev.
AR	UP	243369	-00				
		Member/Lo	ocation	Leeds			
Job Title	Woodsmith Mine Phase 3 Planning	Drg. Ref.					
Calculation	Velocity at outfall from reinjection borehole pad drainage to existing watercourse	Made by	VS	Date	14/03/2017	Chd.	NF

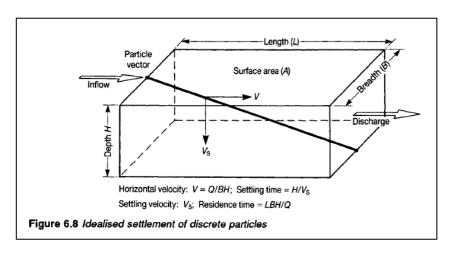
Description	<u>Value</u>	<u>Unit</u>	Notes
1. Calculation of Outfall Pip	e Velocity		
Upstream cover level = Upstream invert level =	207.4 r 207.0 r		Specified oil separator outlet pipe
Downstream Cover Level = Downstream Invert Depth =	207.4 r 206.85 r		Cover Level of 0.55m to enable outfall to ditch.
Fall= Length= Gradient = 1 in	0.2 r 5 r 33.3		
Maximum Flow Rate Pipe Size=	80 l, 225 r		Windes Model using 1 in 20 year return period storm with critical duration of 15 minutes.
Pipe Velocity =	2.22 r	m/s	Colebrook White Equation

Pipe velocity is too high, therefore stilling basin is required for the outfall.

		Job No.		She	et No.		Rev.
AR	243369-00						
		Member/Lo	ocation	Leeds			
Job Title	Woodsmith Mine Phase 3 Planning	Drg. Ref.					
Calculation	Velocity at outfall from reinjection borehole pad drainage to existing watercourse	Made by	VS	Date	14/03/2017	Chd.	NF

2. Calculation of Outfall Velocity after Stilling Basin

Using upstand design as shown on drawing YP-P10-WS-CD-024. Calculated as flow over weir.


Weir Width =	1.3 m	H3C Althon Headwall Assumed
Total Flow=	0.08 m3/s	a /a
Height of water over weir =	0.105 m	$Q = 0.59b\sqrt{g}h^{3/2}$
Gravity, g=	9.81 m/s2	
Flow Calculated=	0.08	
Proportion =	1.00	
Cross sectional area, A =	0.1366 m2	
Velocity=	0.59 m/s	V=Q/A

		Job No.		She	et No.		Rev.
AR	UP	234376	-00				
		Member/Lo	ocation	Leeds			
Job Title	York Potash	Drg. Ref.					
Calculation	Southern Network. Silt removal efficiency calculation	Made by	VS	Date	13/03/2017	Chd.	NF

The utilised volume of the pond and the wetland, as well as

the discharge flow rates are based on the results from the WinDES Model: Woodsmith_Mine_Phase_3 _revA_For_Planning.

Maximum utilised flow depth and volume during the critical storm for the Pond -1 in 20 year Winter 1440 minute storm- are used as most conservative estimate.

$\eta = V_s t_{\rm R}/d_{\rm P}$

Pond		
Volume of Pond	1050 m3	Based on Geometry of the Pond
Total Treatment Volume =	471 m3	
Discharge Rate =	12.2 l/s	20min Winter 1440min design storm.
Average Retention Time =	38607 s	10.7 h
Depth Varies, max:	0.505 m	
Treatment Efficiency Rate	<u>es</u>	
<u>Fine Silt Particles</u> Settling Velocity Vs= Removal efficiency is <i>Therefore it is assumed the</i>	1376%	From Table 6.6 parser particles will settle out.
<u>Coarse Clay</u> Settling Velocity Vs= Removal efficiency is <i>Therefore it is assumed tha</i>	122.3%	ty particles will settle out.

"Design of flood storage reservoirs" (CIRIA B14, 1993),

Chapter 6.5, "estimating Pollutant Removal Efficiency "

Table 6.6 Settling velocities and particle size

Sediment grade	Particle diameter	Settling velocity	V _s (mmis) at 10°C
	d (mm)	Sand, density 2650 kg/m³	Sewage solids, density 1200 kg/m³
Gravel	10.0	800.0	-
Coarse sand	1.0	200.0	30.0
Medium sand	0.5	70.0	17.0
Fine sand	0.2	22.0	5.0
Very fine sand	0.1	10.0	1.3
Coarse silt	0.06	6.7	0.3
Fine silt	0.01	0.18	0.08
Coarse clay	0.004	0.016	0.002
Fine clay	0.001	0.011	0.001

For soil particles: $V_s = 1/10 [d/0.0314]^{\nu_s}$

Static Volume of Wetland		Based on Geometry of the Wetland
Storm Stored Volume=		Based on critical design storm
Total Treatment Volume =	435 m3	
Discharge Rate =	12.6 l/s	Based on critical design storm
Average Retention Time =	34524 s	9.6 h
Dariel Vanian annual	0.5 m	From the WinDes Model
Depth Varies, approx:	0.5 m	From the winDes Wodel
Treatment Efficiency Dates		
Treatment Efficiency Rates	<u>2</u>	
Fine Silt Particles		
Settling Velocity Vs=		From Table 6.6
Removal efficiency is		
TI C '.' 1.1.	all silt and coa	rser particles will settle out.
Inerefore it is assumed that		
<u>Coarse Clay</u>		
U		

Fine Clay

Settling Velocity Vs= 0.011 mm/s Removal efficiency is 84.1% Therefore it is assumed that 84% of the fine clay particles will settle out. Fine ClaySettling Velocity Vs=0.011 mm/sRemoval efficiency is76.0%Therefore it is assumed that 76% of the remaining suspended fine clay particles will settle or

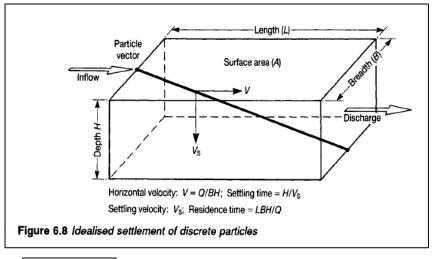
ARUP		Job No.	Job No.		Sheet No.		Rev.
		234376	234376-00				
		Member/L	ocation	Leeds			
Job Title	York Potash	Drg. Ref.					
Calculation	Southern Network. Silt removal efficiency calculation	Made by	VS	Date	13/03/2017	Chd.	NF

Particle Size	Typical Settling velocities (mm/s)	% Removal in Pond	% Removal in Wetland	Total % Efficiency
Course Sand	200	100%		100%
Fine Sand	22	100%		100%
Coarse Silt	6.7	100%		100%
Fine Silt	0.18	100%	100%	100%
Coarse Clay	0.016	100%	100%	100%
Fine Clay	0.011	84%	76%	96%

Particle Size	Overall Removal
Sand	100%
Silt	100%
Clay	98%

Excluding any removal benefits from Silt Fences and Check Dams

it


		Job No.		She	et No.		Rev.
ARUP		234376-00					
	0.1	Member/Lo	cation	Leeds			
Job Title	York Potash	Drg. Ref.					
Calculation	Northern Network. Silt removal efficiency calculation	Made by	VS	Date	13/03/2017	Chd.	NF

The volume and the discharge rates of the silt removal facility, the ponds and the wetlands are based on the results from the WinDES Model:

Woodsmith_Mine_Phase_3 _revA_For_Planning.

Maximum utilised flow depth and volume during the critical storm for Pond A -

1 in 20 year Winter 720 minute storm - are used as the most conservative estimate.

$\eta = V_{\rm s} t_{\rm R}/d_{\rm P}$

Silt removal facility

Silt removal facility		
Volume of Silt removal facility=	350 m3	Based on Geometry
Total Treatment Volume =	350 m3	Based on design storm
Discharge Rate =	283.5 l/s	Based on design storm
Average Retention Time =	1235 s	0.3 h
Depth Varies, approx:	0.625 m	From the WinDes Model
Treatment Efficiency Rates		
Fine Silt Particles		
Settling Velocity Vs=		From Table 6.6
Removal efficiency is	36%	
Therefore it is assumed that 36% of	tine slit particles and	all coarser particles will settle out.
<u>Coarse Clay</u>		
Settling Velocity Vs=	0.016 mm/s	
Removal efficiency is	3.2%	

"*Design of flood storage reservoirs*" (*CIRIA B14, 1993*), Chapter 6.5, "estimating Pollutant Removal Efficiency"

Sediment grade	Particle diameter	Settling velocity	V _s (mm/s) at 10°C	
	d (mm)	Sand, density 2650 kg/m³	Sewage solids, density 1200 kg/m	
Gravel	10.0	800.0		
Coarse sand	1.0	200.0	30.0	
Medium sand	0.5	70.0	17.0	
Fine sand	0.2	22.0	5.0	
Very fine sand	0.1	10.0	1.3	
Coarse silt	0.06	6.7	0.3	
Fine silt	0.01	0.18	0.08	
Coarse clay	0.004	0.016	0.002	
Fine clay	0.001	0.011	0.001	

/etland A

Static Volume of Wetland A= Storm Stored Volume= Total Treatment Volume =	687 m3 214 m3 901 m3	Based on Wetland Geometry Based on design storm
Discharge Rate =	66.1 l/s	Based on design storm
Average Retention Time =	13631 s	3.8 h
Depth Varies, approx:	1.25 m	From the WinDes Model
Treatment Efficiency Rates		
<u>Fine Silt Particles</u> Settling Velocity Vs= Removal efficiency is Therefore it is assumed that all silt	196%	From Table 6.6
<u>Coarse Clay</u> Settling Velocity Vs= Removal efficiency is	0.016 mm/s 17.4%	

Therefore it is assumed that 3.2% of the coarse clay particles will settle out.

Fine ClaySettling Velocity Vs=0.011 mm/sRemoval efficiency is2.2%

Therefore it is assumed that 2.2% of the fine clay particles will settle out.

Therefore it is assumed that 17.4% of the coarse clay particles will settle out.

Fine ClaySettling Velocity Vs=0.011 mm/sRemoval efficiency is12.0%Therefore it is assumed that 12% of the fine clay particles will settle out.

			Job No.		Sheet No.		
ARUP		234376-00					
		Member/Lo	cation	Leeds			
Job Title	York Potash	Drg. Ref.					
Calculation	Northern Network. Silt removal efficiency calculation	Made by	VS	Date	13/03/2017	Chd.	NF

Volume of Pond A	3717 m3	Based on Pond Geometry	Volume of pond	3694 m3	Based on Pond G	eometry
Total Treatment Volume =	3672 m3	Based on design storm	Total Treatment Volume =	2796 m3	Based on design s	torm
Discharge Rate =	138 l/s	Q From WinDes Model	Discharge Rate =	84.5 l/s	Q From WinDes M	Iodel
Average Retention Time =	26609 s	7.4 h	Average Retention Time =	33089 s	9.2 h	551.48
D / W ·			Depth			
Depth Varies, approx:	1.5 m		Varies, approx:	1.125 m	Maximum from th	e WinDes Model
Treatment Efficiency Rates			Treatment Efficiency Rates	i		
Fine Silt Particles			Fine Silt Particles			
Settling Velocity Vs=	0.18 mm/s	From Table 6.6	Settling Velocity Vs=		S From Table 6.6	
Removal efficiency is Therefore it is assumed that all silt	319% and coarser particles v	will settle out.	Removal efficiency is Therefore it is assumed that all s	529% silt and coarser part	icles will settle out.	
Coarse Clay			Coarse Clay			
Settling Velocity Vs=	0.016 mm/s		Settling Velocity Vs=	0.016 mm/s	6	
Removal efficiency is	28.4%		Removal efficiency is	47.1%		
Therefore it is assumed that 28.4%	6 of the ramaining susp	ended coarse clay particles will settle out.	Therefore it is assumed that 47.1	1% of the ramaining	g suspended coarse cla	ay particles will settle ou
<u>Fine Clay</u>			Fine Clay			
Settling Velocity Vs=	0.011 mm/s		Settling Velocity Vs=	0.011 mm/s	6	
Removal efficiency is	19.5%	ended fine elevinentiales, will estile out	Removal efficiency is	32.4%		
I herefore it is assumed that 19.59	6 of the ramaining susp	ended fine clay particles will settle out.	Therefore it is assumed that 32.4	1% of the ramaining	g suspended fine clay p	Darticles will settle out.

ond C

Volume of Pond C =	2474 m3	Based on Pond Geometry
Total Treatment Volume =	1672 m3	Based on design storm
Discharge Rate =	67.7 l/s	Q From WinDes Model
Average Retention Time =	24697 s	6.9 h
Depth Varies, approx:	1.114 m	From the WinDes Model

Static Volume of Wetland	676 m3	Based on Wetland Geometry
Storm Stored Volume=	119 m3	Based on design storm
Total Treatment Volume =	795 m3	
Discharge Rate =	67.5 l/s	Q From WinDes Model
Average Retention Time =	11778 s	3.3 h
Depth		
Varies,		
approx:	0.57 m	From the WinDes Model

Treatment Efficiency Rates

Fine Silt Particles Settling Velocity Vs= 0.18 mm/s From Table 6.6 Removal efficiency is 399% Therefore it is assumed that all silt and coarser particles will settle out.

Coarse Clay

Settling Velocity Vs= Removal efficiency is

0.016 mm/s 35.5%

Therefore it is assumed that 35.5% of the ramaining suspended coarse clay particles will settle out.

Fine Clay

Settling Velocity Vs= 0.011 mm/s Removal efficiency is 24.4% Therefore it is assumed that 24.4% of the ramaining suspended fine clay particles will settle out.

Treatment Efficiency Rates

Fine Silt Particles

Settling Velocity Vs= 0.18 mm/s From Table 6.6 Removal efficiency is 372% Therefore it is assumed that all silt and coarser particles will settle out.

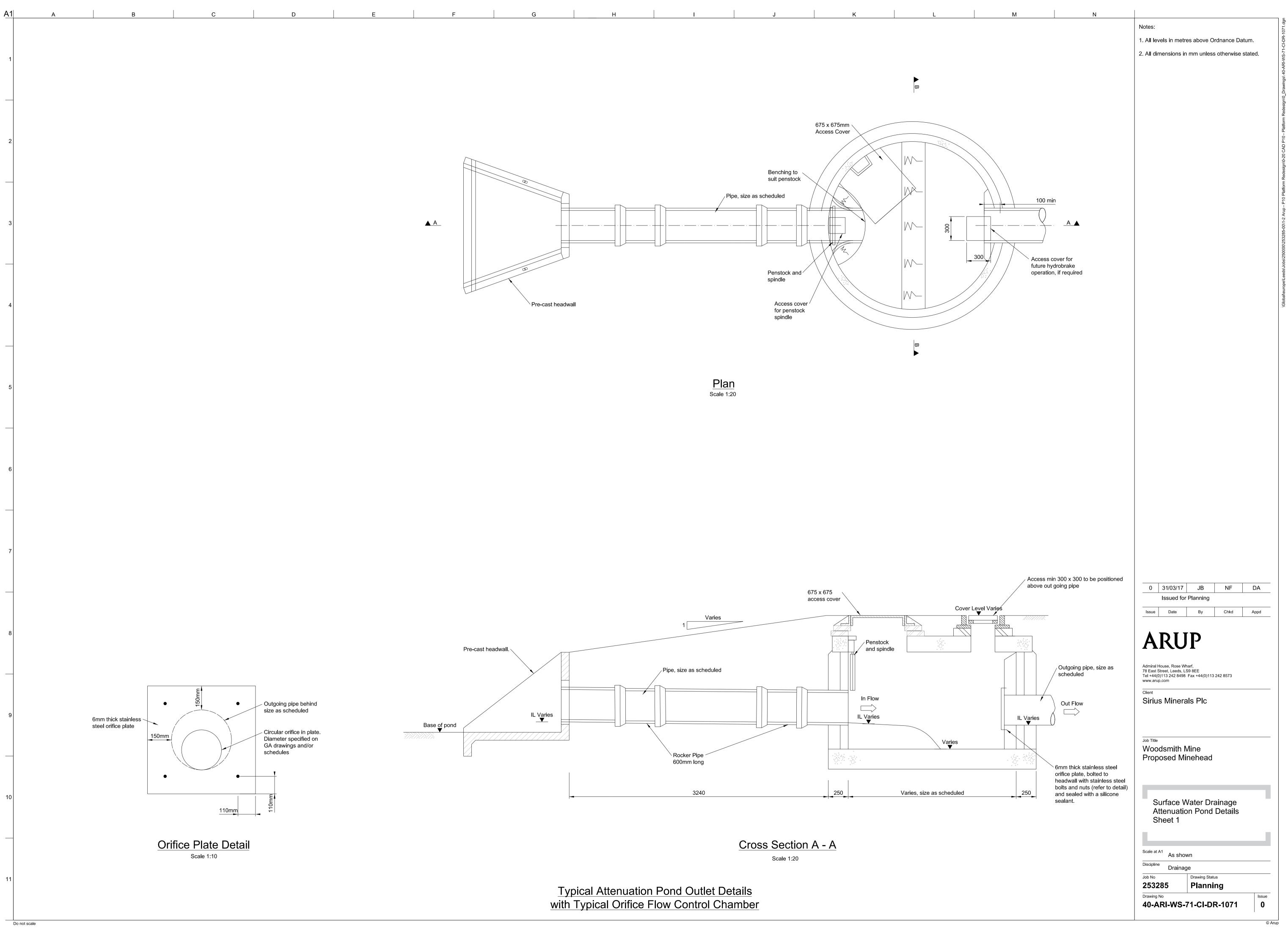
Coarse Clay

Settling Velocity Vs= 0.016 mm/s Removal efficiency is 33.1% 188 mm Therefore it is assumed that 33.1% of the ramaining suspended coarse clay particles will settle out.

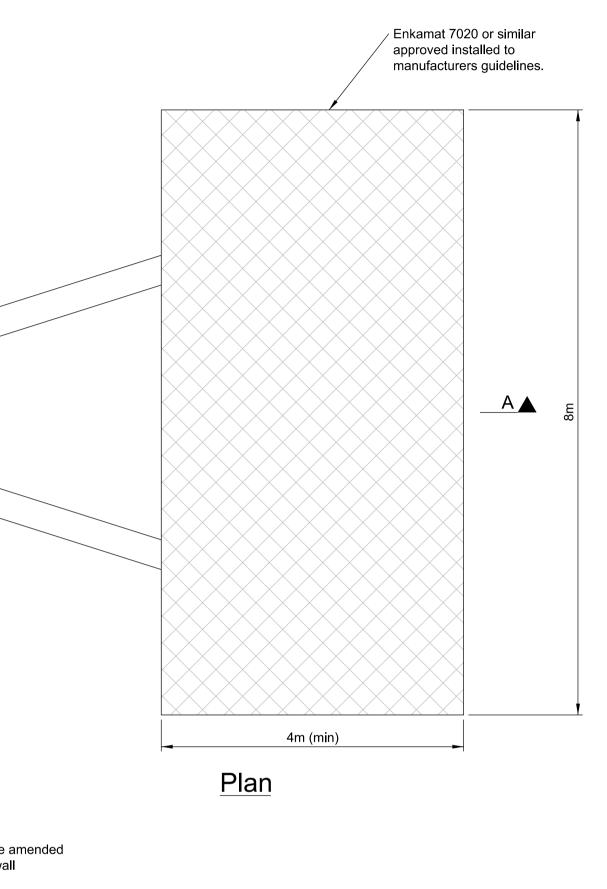
Fine Clay

Settling Velocity Vs= 0.011 mm/s Removal efficiency is 22.7% 130 mm Therefore it is assumed that 22.7% of the ramaining suspended fine clay particles will settle out.

Particle Size	Typical Settling velocities (mm/s)	% Removal in Silt removal facility	% Removal in Wetland A	% Removal in Pond A	% Removal in Pond B	% Removal in Pond C	% Removal in Wetland B	Total % Efficiency
Course Sand	200	100%						100%
Fine Sand	22	100%						100%
Coarse Silt	6.7	100%						100%
Fine Silt	0.18	36%	100%	100%				100%
Coarse Clay	0.016	3%	17%	28%	47%	35.5%	33.1%	85.3%
Fine Clay	0.011	2%	12%	20%	32%	24.4%	22.7%	70.4%


Particle Size	Overall Removal
Sand	100%
Silt	100%
Clay	78%

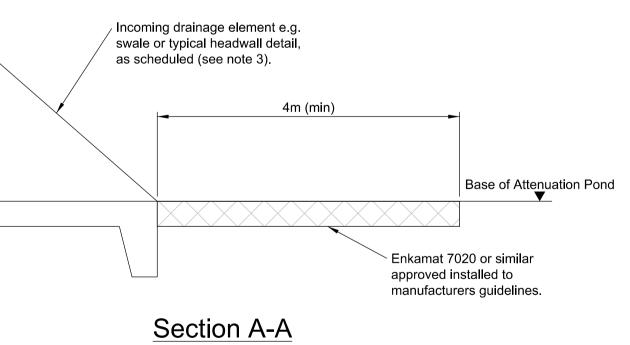
Excluding any removal benefits from Silt Fences and Check Dams


J:\230000\234376-00\0 Arup\0-12 Water\0-12-07 Calcs-Specs\02 Surface Water Drainage\Doves Nest Site\2016-17 Design\ Treatment volume in Site Prep Phase 3 Draft.xlsx : Northern Net Silt Calc

Appendix F

Typical Drainage Details

<u>A1</u>	A	В		С	D	E		F	
1									
2									
3									
4						Incoming pipe size varies			
						▲ <u>A</u>	() 		
5									
6									
							Eau to t	thworks to be an ie into headwall	mended
7									
8						Incoming size varies	pipe		
9									
10									
11									
	Do not scale								



G H I

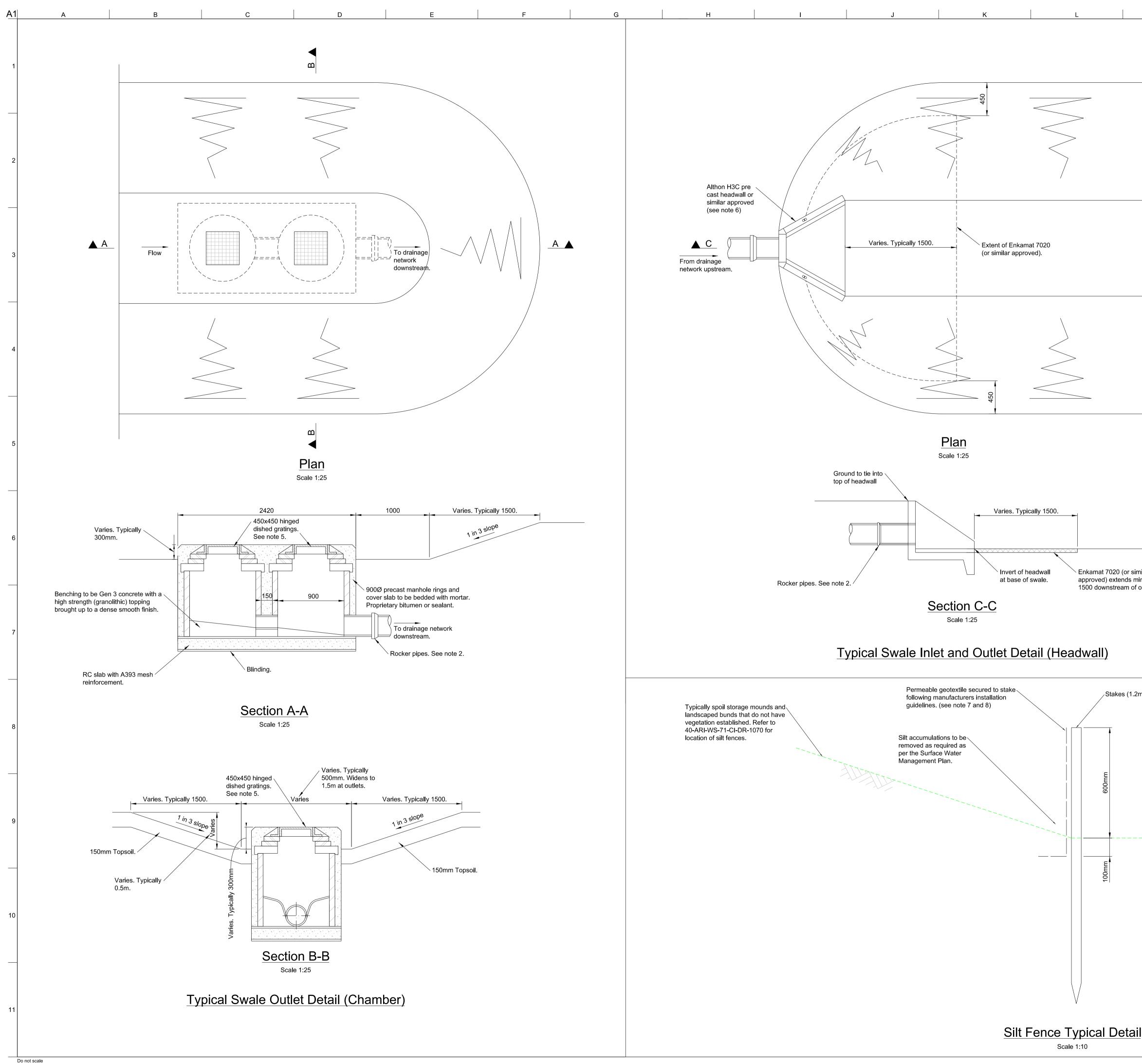
J

К

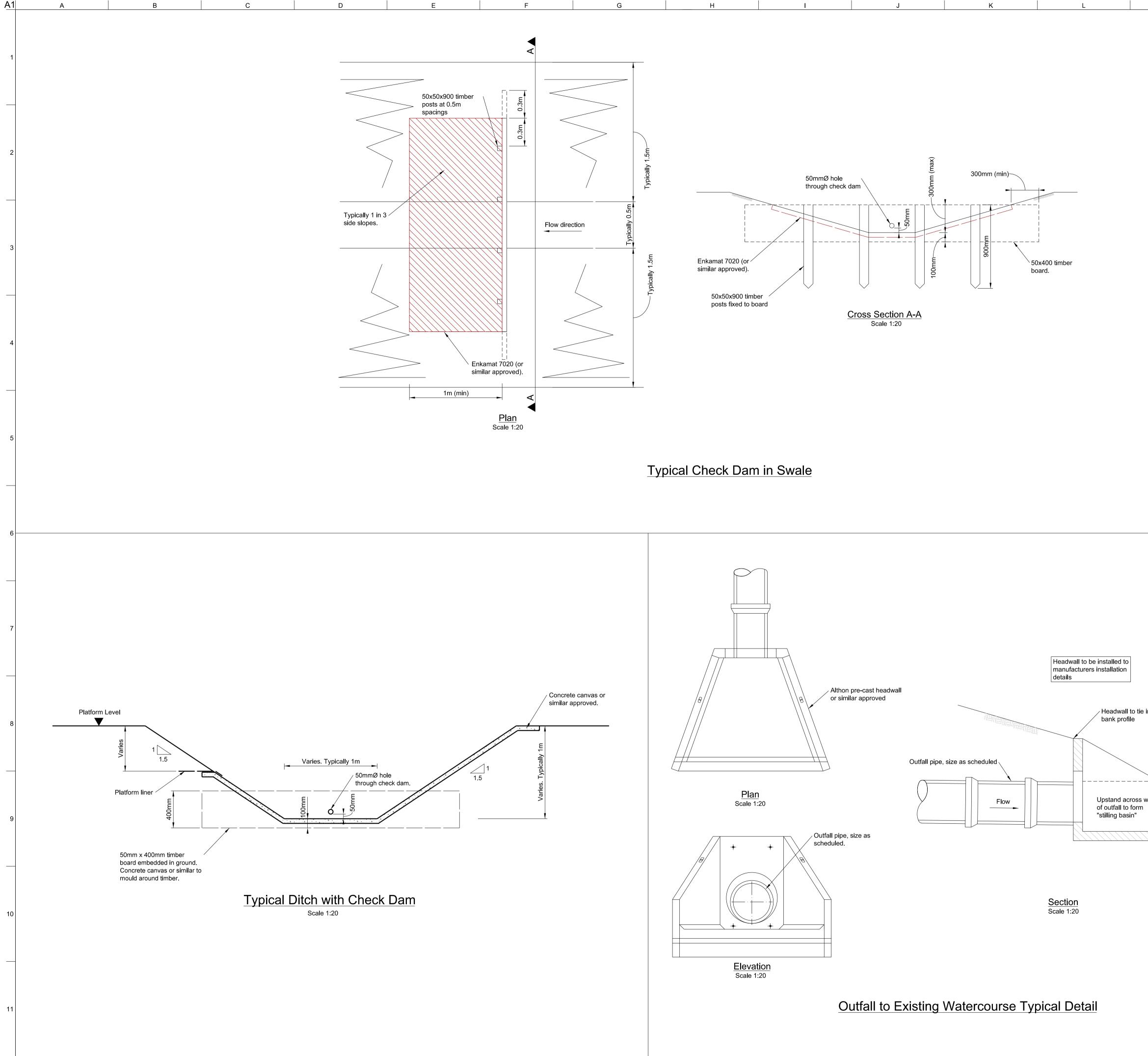
L

Notes:

1. All levels in metres above Ordnance Datum.


2. All dimensions in mm unless otherwise stated.

3. Typical headwall detail Althon or similar approved


Maximum Pip	e Size (mm)	Althon Headwall
Clay or Plastic	PCC	reference
300	225	H3C
500	450	H6C
900	900	H10C
1050	1050	H20C

0	31/03/17	JB	NF	DA
	Issue for F	Planning		
Issue	Date	Ву	Chkd	Appd
Admiral 1 78 East 1 Tel +44(www.aru Client	House, Rose Wi Street, Leeds, L 0)113 242 8498 p.com	S9 8EE Fax +44(0)113	3 242 8573	
Admiral 1 78 East 1 Tel +44(www.aru Client Siriu Job Title	House, Rose Wi Street, Leeds, Li 0)113 242 8498 Ip.com s Minera		3 242 8573	
Admiral 1 78 East 1 Tel +44(www.aru Client Siriu Job Title WOO Prop	House, Rose WI Street, Leeds, L' 0)113 242 8498 p.com s Minera	Als Plc Vater Dr	ainage	
Admiral 1 78 East 1 Tel +44(www.aru Client Siriu Job Title WOO Prop	House, Rose Wi Street, Leeds, Li 0)113 242 8498 p.com s Minera odsmith N bosed Mi urface V ttenuatic heet 2	Als Plc Als Plc Mine nehead	ainage	
Admiral 78 East : Tel +44(www.aru Client Siriu Job Title WOO Prop	House, Rose Wi Street, Leeds, L D)113 242 8498 p.com s Minera odsmith N posed Mi urface V ttenuation heet 2	Als Plc Mine nehead Vater Dr on Pond	ainage	

© Arup

M	Notes:
	1. All works to be in accordance with Sewers for Adoption 7th Edition.
	2. Rocker pipe lengths as follows:
	Schedule of rocker pipe lengths
	Rocker pipe Nominal diameter lenght (mm) of pipe (mm)
	600 150 to 600
	1000 675 to 750
	1250 over 750
	3. For locations of swales refer to drawing 40-ARI-WS-71-CI-DR-1070.
	 Outlet chambers shall be 900mm Ø precast concrete rings with 150 thick concrete surround
	 Gratings shall be hinged dishes. Gratings to loa class B125 minimum with 450x450 clear opening.
_C _	 Headwall to be installed to manufacturers installation details. For pipe sizes greater than 300mm Ø use Headwall H6CA or similar approved.
	7. A proprietary silt fence product should be used
	and installed to the manufacturers guidelines.8. Silt fences to be installed to intercept all runoff
	minimal the silt fence can be removed.
I	
1	0 31/03/17 JB NF DA
tlet.	0 31/03/17 JB NF DA Issue for Planning lssue Date By Chkd Appd
n utlet.	Issue for Planning
utlet.	Issue for Planning Issue Date By Chkd Appd Admiral House, Rose Wharf, 78 East Street, Leeds, LS9 8EE Tel +44(0)113 242 8498 Fax +44(0)113 242 8573 www.arup.com Client
ilar huttet.	Issue for Planning Issue Date By Chkd Appd Admiral House, Rose Wharf, 78 East Street, Leeds, LS9 8EE Tel +44(0)113 242 8498 Fax +44(0)113 242 8573 www.arup.com Client Sirius Minerals Plc Job Title Woodsmith Mine
utlet.	Issue for Planning Issue Date By Chkd Appd Admiral House, Rose Wharf, 78 East Street, Leeds, LS9 8EE Tel +44(0)113 242 8498 Fax +44(0)113 242 8573 www.arup.com Client Sirius Minerals Plc Job Title Woodsmith Mine Proposed Minehead Surface Water Drainage Typical Swale and Silt Fence Details Scale at A1 As shown Discipline Drainage
n utlet.	Issue for Planning Issue Date By Chkd Appd Admiral House, Rose Wharf, 78 East Street, Leeds, LS9 8EE Tel +44(0)113 242 8498 Fax +44(0)113 242 8573 www.arup.com Client Sirius Minerals Plc Job Title Woodsmith Mine Proposed Minehead Surface Water Drainage Typical Swale and Silt Fence Details Scale at A1 As shown

Do not scale

	Notes:
	 To be read in conjunction with all relevant project drawings and specifications. All levels in metres above Ordnance Datum. All dimensions in mm unless otherwise stated. For outfall locations, refer to the surface water drainage general arrangement plan, 40-ARI-WS-71-CI-DR-1070. Exact position to be confirmed on-site by a qualified engineer.
Existing bed level	0 31/03/17 JB NF DA Issue for Planning Issue for Planning Issue Date By Chkd Appd Admiral House, Rose Wharf, 78 East Street, Leeds, LS9 8EE Tel +44(0)113 242 8498 Fax +44(0)113 242 8573 www.arup.com Client
Existing bed level	Issue for Planning Issue Date By Chkd Appd Admiral House, Rose Wharf, 78 East Street, Leeds, LS9 8EE Tel +44(0)113 242 8498 Fax +44(0)113 242 8573 www.arup.com
Existing bed level	Issue for Planning Issue Date By Chkd Appd Admiral House, Rose Wharf, 78 East Street, Leeds, LS9 8EE Tel +44(0)113 242 8498 Fax +44(0)113 242 8573 Www.arup.com Client Sirius Minerals Plc Job Title Woodsmith Mine