Dear Ailsa and Rona,

Happy New Year to you both.

Please find attached a report prepared by Promar forwarded by the applicants in order to answer the questions noted in the request from Rona below. We trust that this will be off assistance and resolve the concerns raised.

Please could you let us know when a decision can be expected with regard to the application now that this information has been provided.

Many thanks, Kind regards, Tim

> NYMNPA 03/01/2018

Assessment of ammonia emissions on High Farm

A report for R & A Harland

promar International

Prepared by:

Tom Gill, Head of Environment

Promar International Ltd Alpha Building London Road Stapeley Nantwich CW5 7JW

🖳 www.promar-international .com

TABLE OF CONTENTS

1.0	CONTEXT AND OBJECTIVES	4
2.0	RESPONSE TO NATIONAL PARK PLANNING COMMITTEE FROM HIGH FARM	5
3.0	APPENDICES	0

1.0 CONTEXT AND OBJECTIVES

Promar has been supporting R & A Harland in the preparation of a slurry storage and management report concerning the need to invest in a new slurry lagoon at High Farm. This follows a breach of the current weeping wall system earlier in 2017 and the need to work with the Environment Agency to improve slurry management issues.

A resultant planning application was submitted by BHD Partnership to the North York Moors National Park Planning Authority in 2nd October 2017. During the consultation phase, Natural England requested additional assessment was necessary to determine the impact of the new lagoon on sensitive environmental receptors as a result of ammonia emissions.

Natural England fed back their requirements to the National Park ecologist and this identified the need to respond to the following objectives:

- 1. To undertake and provided a concise assessment of potential ammonia emissions for the development using SCAIL
- 2. Have the Harland's received advice regarding the new development from any statutory bodies – for example from Natural England regarding Catchment Sensitive Farming?
- 3. What is the Harland's current slurry regime given the limited capacity of their existing slurry storage? How often do they need to spread (on average), what time of year, what method of application is used?
- 4. How is their slurry application regime likely to be affected by the new storage facility? What influences (or changes) will the storage facility have no timing application, frequency of application, and method of application?
- 5. Does the existing slurry store form a crust? Will be proposed application to increase slurry storage also be crust forming?
- 6. Is it intended that any additional measures proposed within the 'additional information' are to be carried out (in addition to the new slurry lagoon)?
- 7. What is the prevailing wind direction of the site?
- 8. Has the potential to cover the lagoon been considered (either with a permanent roof or plastic sheeting when in use) which will minimise aerial pollution? It should be noted that covering slurry stores can lead to higher nitrate content within slurry and so have a greater impact when spreading. For this reason low impact measures of slurry application such as trailing shoe or trailing hose are recommended.

Section 2 of this report provides a comprehensive response to these questions.

2.0 RESPONSE TO NATIONAL PARK PLANNING COMMITTEE FROM HIGH FARM

This section of the report provides a detailed response to the questions raised by the North York Moors National Park ecologist.

The response seeks to support the determination of the planning application and demonstrate that the new slurry storage facility will positively contribute towards reducing environmental impacts to land, water and air.

The information presented below is based on work undertaken with SCAIL and using the latest ammonia analysis provided by AHDB, NFU and Defra Air Quality team.

1. SCAIL modelling

Promar has undertaken detailed analysis of the High Farm proposals and conducted an assessment using SCAIL for the Harland's. SCAIL is a model used to assess emissions associated with ammonia as a result of slurry storage.

The assumptions which have been applied in the SCAIL model are as follows:

- Establishment of a new lagoon
- Surface area of 1200 square metres
- 350 storage days per year

The site has 13 environmentally sensitive receptors within a 10 kilometre distance of the farm. These include Special Protection Areas (SPA), Special Area of Conservation (SAC) and Site of Special Scientific Interest (SSSI) sites. Each of these receptors has varied impacts on flora and fauna which have been taken into account during the modelling.

Two scenarios have been prepared to present the results based on the above assumptions:

• Slurry lagoon with a floating cover.

Appendix 1 presents the modelling results based on a slurry lagoon with a floating cover.

• Slurry lagoon with forming a crust.

Appendix 2 presents the modelling results based on a slurry lagoon forming a crust.

Key Findings

In both scenarios, the proportion of ammonia, nitrogen deposition and acid rain created by the slurry lagoon in terms of the 'process contribution (PC) at receptor edge' is within critical load limits set out within SCAIL.

In both scenarios the results demonstrate there is **no impact** and the emissions across each of the categories **will not exceed critical loads at the receptor edge**.

In both scenarios, the Harland's are seeking to reduce ammonia when applied to land through the use of technology to improve slurry application

2. Have the Harland's received advice regarding the new development from any statutory bodies – for example from Natural England regarding Catchment Sensitive Farming measures?

Yes from the Environment Agency (EA).

The challenges created by the existing slurry storage regime were identified with the EA and it was identified that it was essential to address the failure of the weeping wall system.

Engagement with Natural England has been limited. Whilst the farm lies within the Esk catchment, it was not been identified as a high priority catchment. On all water quality issues, the farm and land holding is identified as 'medium priority'.

3. What is their current slurry regime given the limited capacity of their existing tank; how often do they need to spread (on average), what time of year, what method of application is used?

How often do the Harland's need to spread	The farm is not situated within a Nitrate Vulnerable Zone.
	The store is a weeping wall store measuring 20m by 20m by 2.5m deep. The pressure on storage does not allow for 0.3m of freeboard which is required. At a working depth of 2.2m the store holds 880m3. All the slurry, wash water and rainwater from the farm enters the store
	The liquid portion collects in three settlement tanks and is spread via a sprinkler system which runs automatically when the final tank is at capacity.

What time of year	All year round
What method of application is used?	Low volume irrigator for the dirty water and applied to fields in close proximity to the farm.
	On a regular basis the settling tanks are emptied with a slurry tanker as necessary during the winter.
	Application method all year round is with a slurry tanker with splash plate for the slurry component

4. How is their slurry application regime likely to be affected by the new storage facility; will timing, frequency or method of application change in any way?

How often do the Harland's need to spread with the new facility	The increase in storage will ensure the farm has enough storage for at least 5 months - line with NVZ guidance							
	Applications of slurry will only need to be made in periods when crop requirement and weather is more conducive to reducing run off and lowing emissions to atmosphere							
What time of year	Spring to Autumn							
What method of application is used?	Changes will be made to application technique and be spread through a trailing shoe or by direct injection through a trailing hose. This will reduce emissions of ammonia to the atmosphere							

5. Is the existing slurry pit crust forming and/or is the proposed additional slurry pit anticipated to be crust forming?

The current slurry storage facilities do form a crust and the new slurry lagoon will also be crust forming.

6. Is it intended that any of the additional measures proposed within the 'Additional information' are to be carried out (in addition to the new slurry pit)

To minimise the impact the farm is focusing on using the following procedures/technology:

- Use of chopped straw on the lagoon to form a crust more quickly
- Investigating slurry floating cover options
- Use of direct injection through a trailing hose
- Improving ventilation within the farm buildings to reduce ammonia accumulation within the cowsheds.
- 7. What is the prevailing wind direction of the site?

The prevailing wind is from the South West.

8. Has the potential to cover the lagoon been considered (either with a permanent roof or plastic sheeting when in use) which will minimise aerial pollution? It should be noted that covering slurry stores can lead to higher nitrate content within slurry and so have a greater impact when spreading. For this reason low impact measures of slurry application such as trailing shoe or trailing hose are recommended.

Yes.

One of the scenarios within the SCAIL modelling includes the integration of a floating cover on the new slurry lagoon.

The results demonstrate that for either scenario the Process Contribution (PC) is within the critical limits at receptor edge. However, the additional benefit of a floating cover is reducing water within the lagoon which increases slurry storage availability, maximises nutrient benefit, and reduces the cost of tanking water.

Through the development phase it is proposed that Promar supports the Harland's to engage with two manufacturers of floating covers in order to identify if a cost effective option can be found.

Conclusions

The table below presents the results based on one of the 13 sites within 10 kilometres of High Farm. The example is a SAC and the results from High Farm are within a 20% critical load. Using SCAIL, and the guidance provided, High Farm and its investment in new slurry storage facilities is deemed as having 'no impact'.

	Process Contribution at receptor edge – slurry tank forming a crust	Minimum Critical load Level
Ammonia (NH3) (µg/m3)	0.16	1
Nitrogen Deposition (kg N/ha/year	0.83	5
Acid deposition (KEq H+/ha/yr)	0.056	0.32

The results clearly demonstrate that the process contribution at receptor edge is well within the minimum critical load levels. For all 13 sites, similar results to the above example were found regardless of whether the slurry lagoon had a floating cover or formed a crust.

The background concentration is not reported as the farm is not able to control or influence these concentrations. This is the proportion of ammonia, nitrogen deposition and acid deposition which is already in the atmosphere as a result of other activities in the local environment.

The farm business is looking at further mitigation techniques to further reduce these concentrations including best practice nutrient application techniques 'in field' as well as the potential to cover the new lagoon. However, the appendices clearly demonstrate there is only a small reduction in emissions of ammonia achieved through use of a cover.

We would also like to advise that we have sought guidance from Defra's Air Quality team and Agriculture Horticulture & Development Board (AHDB) have been consulted in the preparation of this response.

3.0 APPENDICES

3.1 Appendix 1 – SCAIL modelling results associated with a slurry tank with a floating cover

NYM SSSI

	·	•											
Regior	1:	Engl	and										
Site N	ame:	Nort	th York Mo	ors									
Site C	ode: 💿	4003											
Design	nation Status: 💿	SSSI											
Distan	ce from Installation (m): 🗷	1090)										
Recep	tor Type:	Hab	itat										
Grid R	eference:	4884	497.7,5061	07.2									
Met Si	te: 🕑	CHU	R										
	ode: 🕑	Con	servative										
PM ₁₀ F	ercentile: 🕑	Ave	rage										
Installa	tion Information 🕐												
No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odor (kOu	i/a) N	Conc NH ₃ (µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m)	Con Odo 3) (Ou	
1	High Farm	1	1	-	0.71	-		0.13	0.68	0.046	199	-	
Total D	epositions/Concentrations and	Exceedance	s (?)	1									
	ntrations/Depositions and Crit Levels	lical	NH₃ (µg/m3)		N Dep. (kg N/ha/j	yr)		l Dep. H+/ha/j	yr)	PM ₁₀ (μg/m3)		Odour (Ou/m3)	,
	s Contribution (PC) at receptor e		0.13		0.68		0.04	c.					
		-						-		-		-	
Backgr	ound concentration at receptor e	dge 🕐	1.14		15.82		1.40 (N:1.13 S:0.27)			-		-	
	ted Environmental ntration/Deposition (PEC) ③		1.27		16.5		1.45			-		-	
	imental Assessment Level		Lower: 1		10.0		maxl	N: 0.79		-		-	
or Critic	al Load / Level 🕑		Upper: 3				max	S: 0.15					
			(?)		Dwarf shr		mint	N: 0.50					
					heath - up	land							
							upla	rf shrub nd	neatn -				
					ALTERNA	ATIVE	CRIT	TICAL LO	AD INFO	Ī			
USE C	WN THRESHOLDS?												

concentrations/Depositions and Critical .oads/Levels	NH₃ (μg/m3)	N Dep. (kg N/ha/yr)	Acid Dep. (kEq H+/ha/yr)	PM ₁₀ (µg/m3)	Odour (Ou/m3)
Process Contribution (PC) at receptor edge	0.13	0.68	0.046	-	-
ackground concentration at receptor edge 💿	1.14	15.82	1.40 (N:1.13 S:0.27)	-	-
Predicted Environmental Concentration/Deposition (PEC) 💿	1.27	16.5	1.45	-	-
nvironmental Assessment Level r Critical Load / Level ⊕	Lower: 1 Upper: 3	10.0 Dwarfshrub heath - upland	maxN: 0.79 maxS: 0.15 minN: 0.50 Dwarf shrub heath - upland	-	-
USE OWN THRESHOLDS?		ALTERNATIVE	CRITICAL LOAD INFO		
6 of relevant standard PC 💿	Lower: 13% Upper: 4%	7%	6%	-	-
6 of relevant standard PEC 🖲	Lower: 127% Upper: 42%	165%	184%	-	-
XCEEDANCE ®	Lower: 0.27 Upper: No exceedance	6.50	0.66	-	-
roject Notes	·		•		

NYM SPA

Site Information North York Moors ((SPA)			•									
Region:	E	ingland											
Site Name:	N	lorth York Mo	ors										
Site Code: 🖲	U	IK9006161											
Designation Status: 💿	S	PA											
Distance from Installation (m): 🕑	1	091											
Receptor Type:		labitat											
Grid Reference:		488496,506105.8											
Met Site: (?)	HUR												
Run Mode: 🕐	-	onservative											
PM ₁₀ Percentile: 🕐	A	verage											
No. Name	No. of sources	No. of new	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid	Conc PM ₁₀	Conc			
		sources				(µg/m3)		H+/ha/yr)		(Ou/m3			
1 High Farm	1	sources 1	-	0.71	-		0.68			(Ou/m3 -			
		1	-	0.71	-	(µg/m3)		H+/ha/yr)		(Ou/m3 -			
Total Depositions/Concentrations ar	nd Exceedan	1	-	0.71	-	(µg/m3)		H+/ha/yr)	(µg/m3) -	(Ou/m3 - our			
Total Depositions/Concentrations ar	nd Exceedan	1 nces (2)		1		(µg/m3) 0.13	0.68	H+/ha/yr) 0.046	(µg/m3) - Od	-			
Total Depositions/Concentrations ar Concentrations/Depositions and C Loads/Levels	nd Exceedan	1 nces 🕐		N Dep.	yr) ((µg/m3) 0.13 Acid Dep.	0.68	H+/ha/yr) 0.046 PM10	(µg/m3) - Od	- our			
Total Depositions/Concentrations and Concentrations/Depositions and C Loads/Levels Process Contribution (PC) at receptor	nd Exceedan ritical	1 nces (?) NH ₃ (µg/m3)	1	N Dep. (kg N/ha/	yr) ((µg/m3) 0.13 Acid Dep. kEq H+/ha	0.68	H+/ha/yr) 0.046 PM10	(µg/m3) - Od	- our			
Total Depositions/Concentrations ar Concentrations/Depositions and Ci Loads/Levels Process Contribution (PC) at receptor Background concentration at receptor	nd Exceedan ritical	1 nces (2) NH ₃ (µg/m3) 0.13	•	N Dep. (kg N/ha/) 0.68	yr) (1	(µg/m3) 0.13 Acid Dep. kEq H+/ha	0.68	H+/ha/yr) 0.046 PM10	(µg/m3) - Od	- our			
Total Depositions/Concentrations ar Concentrations/Depositions and Concentrations/Depositions and Concentrations/Levels Process Contribution (PC) at receptor Background concentration at receptor Predicted Environmental	nd Exceedan ritical	1 nces (?) NH ₃ (µg/m3) 0.13 1.14	•	N Dep. (kg N/ha/) 0.68 15.82	yr) (1	(µg/m3) 0.13 Acid Dep. kEq H+/ha 0.046 1.40 (N:1.1)	0.68	H+/ha/yr) 0.046 PM10	(µg/m3) - Od	- our			
Total Depositions/Concentrations ar Concentrations/Depositions and Cl Loads/Levels Process Contribution (PC) at receptor Background concentration at receptor Predicted Environmental Concentration/Deposition (PEC) (9)	nd Exceedan ritical	1 nces (?) NH ₃ (µg/m3) 0.13 1.14		N Dep. (kg N/ha/) 0.68 15.82	yr) (1 1	(µg/m3) 0.13 Acid Dep. kEq H+/ha 0.046 1.40 (N:1.1)	0.68 (yr) 3 S:0.27)	H+/ha/yr) 0.046 PM10	(µg/m3) - Od	- our			
Total Depositions/Concentrations ar Concentrations/Depositions and C Loads/Levels Process Contribution (PC) at receptor	nd Exceedan ritical	1 Incest 3/ NH3 (µg/m3) 0.13 1.14 1.27		N Dep. (kg N/ha/ 0.68 15.82 16.5	yr) (1 1 1	(µg/m3) 0.13 Acid Dep. kEq H+/ha 0.046 1.40 (N:1.1)	0.68	H+/ha/yr) 0.046 PM10	(µg/m3) - Od	- our			
Total Depositions/Concentrations ar Concentrations/Depositions and Ci Loads/Levels Process Contribution (PC) at receptor Background concentration at receptor Predicted Environmental Concentration/Deposition (PEC) (1) Environmental Assessment Level	nd Exceedan ritical	1 NH3 (µg/m3) 0.13 1.14 1.27 Lower: 1		N Dep. (kg N/ha/ 0.68 15.82 16.5	yr) (1 1 1 1	(ugim3) 0.13 Acid Dep. kEq H+/ha 0.046 1.40 (N:1.1) 1.45 maxN: 0.47	0.68	H+/ha/yr) 0.046 PM10	(µg/m3) - Od	- our			

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH ₈ (t/a)	Odou (kOu/	r Conc a) NH₃ (µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	PM ₁₀	Conc Odour (Ou/m3)
1	High Farm	1	1	-	0.71	-	0.13	0.68	0.046	-	-
Total	Depositions/Concentrations a	nd Exceedan	ces 🕐								
	entrations/Depositions and C s/Levels	ritical	NH₃ (µg/m3)		l Dep. kg N/ha/y		Acid Dep. (kEq H+/ha	i/yr)	РМ ₁₀ (µg/m3)		our ı/m3)
Proce	ess Contribution (PC) at recepto	r edge	0.13	a	.68		0.046		-	-	
Backg	ground concentration at recepto	1.14	1	5.82		1.40 (N:1.1	3 S:0.27)	-	-		
	cted Environmental entration/Deposition (PEC) ③	1.27	1	6.5		1.45		-	-		
	Environmental Assessment Level or Critical Load / Level ()			F a (E	5.0 Pluvialis spricaria North-wes Europe - breeding)		maxN: 0.47 maxS: 0.15 minN: 0.18 Pluvialis ap (North-west Europe - br	ricaria	-	-	
					ALTERNA	TIVE	CRITICAL LOAD INFO				
USE	OWN THRESHOLDS?										
% of I	6 of relevant standard PC 🕐		Lower: 13 Upper: 49		14%		11%		-	-	
% of I	relevant standard PEC 🖲		Lower: 12 Upper: 42		330%		309%		-	-	
EXCE	EDANCE ③		Lower: 0.3	27 1 D	1.50		0.98		-	-	

NYM SAC

Site In	formation North York Moors	(SAC)		<u> </u>	•						
Regio	on:	E	ngland								
Site I	Name:	N	orth York Mo	ors							
Site (Code: 🕐	U	K0030228								
Desig	gnation Status: 🕲	S	AC								
Dista	nce from Installation (m): 💿	1	091								
Rece	ptor Type:	н	abitat								
Grid	Reference:	4	88499,506107	.6							
Met 9	Site: 🕐	C	HUR								
	Mode: 🕑	onservative									
PM ₁₀	Percentile: 💿	A	verage								
Install	ation Information 🕐										
No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odou (kOu/		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3
1	High Farm	1	1	-	0.71	-	0.13	0.68	0.046	-	-
Total I	Depositions/Concentrations	and Exceedan	ices 🕲								
Conce	entrations/Depositions and (Oritical	NH ₃	N	l Dep.		Acid Dep.		PM ₁₀	Od	our
Loads	/Levels		(µg/m3)	(kg N/ha/y	/r) ((kEq H+/ha	/yr)	(µg/m3)	(Ou	i/m3)
Proces	ss Contribution (PC) at recepted	or edge	0.13	o	0.68		0.046		-	-	
Backg	round concentration at recepto	or edge 💿	1.14	1	5.82	1	1.40 (N:1.13	3 S:0.27)	-	-	
	cted Environmental entration/Deposition (PEC) @)	1.27	1	6.5	1	1.45		-	-	
	nmental Assessment Level		Lower: 1	5	.0		maxN: 0.50		-	-	
or Crit	ical Load / Level 🖲		Upper: 3				maxS: 0.18				
			(?)	E	lanket bo	ogs I	minN: 0.32				
								_			
						E	Blanket bog	s			

			sources		(µg/m3)		H+/ha/yr)	(µg/m3)	(Ou/m
1	High Farm	1	1 -	0.71 -	0.13	0.68	0.046	-	-
Total	Depositions/Concentration	ons and Exceedar	nces 🕐						
	entrations/Depositions a s/Levels	nd Critical	NH₃ (μg/m3)	N Dep. (kg N/ha/yr)	Acid Dep. (kEq H+/ha	a/yr)	РМ ₁₀ (µg/m3)	1	our ı/m3)
Proce	ess Contribution (PC) at rec	eptor edge	0.13	0.68	0.046		-	-	
	ground concentration at rec	1.14	15.82	1.40 (N:1.1	3 S:0.27)	-	-		
	cted Environmental entration/Deposition (PE	C) 🖲	1.27	16.5	1.45		-	-	
Environmental Assessment Level or Critical Load / Level (?)		Lower: 1 Upper: 3 (?)	5.0 Blanket bogs	js	-	-			
	OWN THRESHOLDS?			ALTERNATIV	/E CRITICAL L	OAD INFO			
	relevant standard PC (?)		Lower: 13%	14%	10%				
76 01 1	elevant standard PC @		Upper: 4%	1470	1076		-	-	
% of I	relevant standard PEC 🖲		Lower: 127% Upper: 42%	330%	290%		-	-	
EXCE	EDANCE (2)		Lower: 0.27 Upper: No exceedance	11.50	0.95		-	-	

Littlebeck Wood SSSI

					_							
Site In	formation Littlebeck Wood (SS	SSI)			~	3						
Regio	n:	Eng	land									
Site N			lebeck Woo	bd								
	Code: 🕑	317	-									
-	nation Status: 🕲	SSS										
	nce from Installation (m): 💿	214	5 oitat									
	otor Type: Reference:		936.6.5049									
	ite: (?)	487 CHI	1 A A A A A A A A A A A A A A A A A A A	04.9								
	Node: 💿		iservative									
	Percentile: 🕑		rage									
	ation Information 🖲											
No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)		NH _S (t/a)	Odou (kOu/:		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3)
1	High Farm	1	1	-	C	0.71	-	0.04	0.33	0.022	-	-
Total [Depositions/Concentrations an	d Exceedance	es 🕲									
Conce	ntrations/Depositions and C	itical	NH ₃		N D)ep.		Acid Dep.		PM ₁₀	Od	our
Loads	/Levels		(µg/m3)		(kg	N/ha/y	/r)	(kEq H+/ha	/yr)	(µg/m3)	(0)	u/m3)
Proces	s Contribution (PC) at receptor	edge	0.04		0.31	1		0.021		-	-	
Backgi	round concentration at receptor	edge 🕑	0.80		27.30			1.53 (N:1.21 S:0.32)		-	-	
Dradic	ted Environmental		0.84		27.6	61		1.55		-	-	
	ntration/Deposition (PEC) (2)											
Enviro	nmental Assessment Level		Lower: 1		5.0			maxN: 2.08		-	-	
or Criti	cal Load / Level 🖲		Upper: 3					maxS: 1.64				
			(?)			ad-leav		minN: 0.44				
						ed and		Acid grassla	and unlead			
					AL	LTERNA	TIVE	RITICAL LO	DAD INFO			

		sources		(µg/m3)		H+/ha/yr)	(µg/m3)	(Ou/m3
1 High Farm	1	1 -	0.71 -	0.04	0.33	0.022	-	-
Total Depositions/Concentrations and	l Exceedance	s (?)						
Concentrations/Depositions and Cri Loads/Levels	tical	NH₃ (μg/m3)	N Dep. (kg N/ha/yr)	Acid Dep. (kEq H+/ha	a/yr)	РМ ₁₀ (µg/m3)	1	our 4/m3)
Process Contribution (PC) at receptor e	edge	0.04	0.31	0.021		-	-	
Background concentration at receptor e	edge 🕑	0.80	27.30	1.53 (N:1.2	1 S:0.32)	-	-	
Predicted Environmental Concentration/Deposition (PEC) ③		0.84	27.61	1.55		-	-	
Environmental Assessment Level or Critical Load / Level		Lower: 1 Upper: 3	5.0 Broad-leaved, mixed and yew woodland	maxN: 2.08 maxS: 1.64 minN: 0.44 Acid grassl	and upland	-	-	
USE OWN THRESHOLDS?								
% of relevant standard PC 🖲		Lower: 4% Upper: 1%	6%	1%		-	-	
% of relevant standard PEC 🖲		Lower: 84% Upper: 28%	552%	75%		-	-	
EXCEEDANCE 🖲		Lower: No exceedance Upper: No exceedance	22.61	-0.53		-	-	

Whitby Saltwick SSSI

Site I	Information Whitby-Saltwic	k (SSSI)				~	2						
Regi	ion:		Engl	and									
Site	Name:		Whi	tby-Saltwid	ck								
Site	Code: 🕐		3204	4									
Desi	ignation Status: 🕐		SSSI										
Dist	ance from Installation (m):	3	4898	3									
Rece	eptor Type:		Hab	itat									
Grid	d Reference:		4902	203.8,5113	98.2								
Met	Site: 🕐		CHU	R									
	Mode: (2)		Con	servative									
PM ₁₀	0 Percentile: 🕑		Ave	age									
Instal	llation Information 🕐												
No.	Name	No. o sourc		No. of new sources	PM ₁₀ (t/a)		lH _s Va)	Odou (kOu		Dep N (kg/ha/yr)		Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3)
1	High Farm	1		1	-	0	.71	-	0.01	0.06	0.004	-	-
_	I Depositions/Concentration	is and Exce	edance	s (?)									
Total													
Conc	centrations/Depositions an Is/Levels	d Critical		NH₃ (µg/m3)		N D (kg	ep. N/ha/y	nr)	Acid Dep. (kEq H+/h		PM ₁₀ (μg/m3)		our ı/m3)
Conc Load	centrations/Depositions an			NH3			N/ha/y	r r)					
Conc Load Proce	centrations/Depositions an ls/Levels	ptor edge		NH₃ (µg/m3)		(kg	N/ha/y	(r)	(kEq H+/h	a/yr)			
Conc Load Proce Backy Predi	entrations/Depositions an Is/Levels ess Contribution (PC) at rece	ptor edge ptor edge 🗷		NH₃ (µg/m3) 0.01		(kg 0.05	N/ha/y	rr)	(kEq H+/h 0.004	a/yr)			

Concentrations/Depositions and Critical Loads/Levels	NH ₃ (µg/m3)	N Dep. (kg N/ha/yr)	Acid Dep. (kEq H+/ha/yr)	РМ ₁₀ (µg/m3)	Odour (Ou/m3)
Process Contribution (PC) at receptor edge	0.01	0.05	0.004	-	-
Background concentration at receptor edge 🕖	0.50	9.66	0.91 (N:0.69 S:0.22)	-	-
Predicted Environmental Concentration/Deposition (PEC) ③	0.51	9.71	0.91	-	-
Environmental Assessment Level or Critical Load / Level 🖲	Lower: 1 Upper: 3 @	No sensitive habitat or species at this site	No sensitive habitat or species at this site	-	-
		ALTERNATIVE	CRITICAL LOAD INFO		
USE OWN THRESHOLDS?					
% of relevant standard PC 💿	Lower: 1%	n/a	n/a	-	-
	Upper: 0%				
% of relevant standard PEC 🖲	Lower: 51% Upper: 17%	n/a	n/a	-	-
EXCEEDANCE 🖲	Lower: No exceedance	n/a	n/a	-	-
	Upper: No exceedance				

promar International

Robin Hoods Bay SSSI

Regio			England			_						
-	Name:		Robin Ho	ode Bave	Maur	Wyke To	Read	Cliff				
	Code: (?)		3814	ous bay.	maw	wyke ru	Deas	cun				
	nation Status: (1)		5551									
	nce from Installation (m): @)	5816									
	ptor Type:		Habitat									
Grid	Reference:		493713.2	,507830.	6							
Met 9	Site: 🕐	(CHUR									
Run /	Mode: 🕑	(Conserva	tive								
PM ₁₀	Percentile: 🕑		Average									
Install	ation Information 🗷											
No.	Name	No. of sources	No. nev sou		И ₁₀ а)	NH ₈ (t/a)	Odou (kOu/		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3
1	High Farm	1	1	-		0.71	-	0.01	0.06	0.004	-	-
Total I	Depositions/Concentrations	and Exceeda	nces 🕲						1		1	
Conce	entrations/Depositions and	l Critical	NH3		N	Dep.		Acid Dep.		PM ₁₀	Od	our
Loads	/Levels		(µg/	m3)	(k	g N/ha/y	/r)	(kEq H+/ha	/yr)	(µg/m3)	(Ou	ı/m3)
Proces	ss Contribution (PC) at recep	otor edge	0.01		0.	08		0.005		-	-	
Backg	round concentration at recep	otor edge 💿	1.22		25	5.34		2.14 (N:1.8	1 S:0.33)	-	-	
	·	-	1.23		25	5.42		2.15		-	-	
	cted Environmental entration/Deposition (PEC)	(?)										
Enviro	nmental Assessment Level		Low	er: 1	5.	0		maxN: 2.79		-	-	
	ical Load / Level 🖲			er: 3				maxS: 2.43				
			•			road-leav		minN: 0.36				
						ixed and oodland	yew	Broad-leave	ad mixed			
						ooulanu		and yew wo				
								and you us	Joanana			
							711/5	CRITICAL LO		1		

		sources		(µg/m3)		H+/ha/yr)	(µg/m3)	(Ou/m3)
High Farm	1	1 -	0.71 -	0.01	0.06	0.004	-	-
otal Depositions/Concentrati	ions and Exceeda	nces 🕐						
Concentrations/Depositions Loads/Levels	and Critical	NH₃ (µg/m3)	N Dep. (kg N/ha/yr)	Acid Dep. (kEq H+/h		PM ₁₀ (μg/m3)	1	lour u/m3)
Process Contribution (PC) at re	ceptor edge	0.01	0.08	0.005		-	-	
Background concentration at re	ceptor edge 💿	1.22	25.34	2.14 (N:1.8	31 S:0.33)	-	-	
Predicted Environmental Concentration/Deposition (Pl	EC) 🕐	1.23	25.42	2.15		-	-	
Environmental Assessment Lev or Critical Load / Level 🖲	rel	Lower: 1 Upper: 3	5.0 Broad-leaved, mixed and yew woodland	Broad-leav and yew w	3 red, mixed oodland	-	-	
USE OWN THRESHOLDS?			ALTERNATIV	CRITICAL L	OAD INFO			
% of relevant standard PC ③		Lower: 1% Upper: 0%	2%	0%		-	-	
% of relevant standard PEC ()		Lower: 123% Upper: 41%	508%	77%		-	-	
EXCEEDANCE (?)		Lower: 0.23 Upper: No	20.42	-0.65		-	-	

Biller Howe Dale SSSI

Site Information	Biller Howe Dale (SS	SI)			•						
Region:		En	gland								
Site Name:		Bil	ller Howe Da	le							
Site Code: 🕑		33	10								
Designation Stat	us: 🕐	SS	SI								
Distance from In	stallation (m): 💿	58	35								
Receptor Type:		Ha	bitat								
Grid Reference:		49	1424.1,5023	62.1							
Met Site: 🕑		CH	IUR								
Run Mode: 🕑		Co	nservative								
PM ₁₀ Percentile:	(?)	Av	erage								
Installation Inform	mation 🕐										
No. Name		No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odou (kOu		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3
1 High Farn	n	1	1	-	0.71	-	0.01	0.06	0.004	-	-
Total Depositions	/Concentrations and	Exceedance	ces 🕐		1						
Concentrations/	Depositions and Cri	tical	NH ₃		l Dep.		Acid Dep		PM ₁₀	Od	our
Loads/Levels			(µg/m3)		kg N/ha/	yr)	(kEq H+/I		(µg/m3)	(01	ı/m3)
Process Contribut	ion (PC) at receptor e	dge	0.01	a	.08		0.005		-	-	
Background conce	entration at receptor e	edge 🕐	0.95	2	5.62		1.43 (N:1.	14 S:0.29)	-	-	
Predicted Enviro	nmental eposition (PEC) ③		0.96	2	25.7		1.43		-	-	
Concentration/D				5	5.0		maxN: 0.6	51	-	-	
Environmental As	sessment Level		Lower: 1								
			Lower: 1 Upper: 3				maxS: 0.2	4			
Environmental As				E	Broad-lea		maxS: 0.2 minN: 0.3				
Environmental As			Upper: 3	E		d yew		7 h and			

No. Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	PM ₁₀	Conc Odour (Ou/m3)
1 High Farm	1	1	-	0.71	-	0.01	0.06	0.004	-	-
Total Depositions/Concentrations an	d Exceedanc	es (2)								
Concentrations/Depositions and Cr Loads/Levels	itical	NH3 (µg/m3)		N Dep. (kg N/ha/		Acid Dep. (kEq H+/ha	ı/yr)	PM ₁₀ (µg/m3)		lour u/m3)
Process Contribution (PC) at receptor	edge	0.01		0.08		0.005		-	-	
Background concentration at receptor	edge 💿	0.95		25.62		1.43 (N:1.1	4 S:0.29)	-	-	
Predicted Environmental Concentration/Deposition (PEC) 🖲		0.96		25.7		1.43		-	-	
ncentration/Deposition (PEC) ③ vironmental Assessment Level Critical Load / Level ④		Lower: 1 Upper: 3 (?)				maxN: 0.61 maxS: 0.24 minN: 0.37 Fen marsh and swamp - lowland		-	-	
				ALTERN	ATIVE C	RITICAL LO	DAD INFO			
USE OWN THRESHOLDS?										
% of relevant standard PC 🖲		Lower: 19 Upper: 09		2%	:	2%		-	-	
% of relevant standard PEC ③		Lower: 96 Upper: 32		514%	:	236%		-	-	
EXCEEDANCE ®		Lower: No exceedar Upper: No exceedar	nce o	20.70	1	0.82		-	-	

Beck Hole SSSI

Site In	formation	Beck Hole (SSSI)				✓ ③						
Regio	n:		Eng	land								
Site N	lame:		Bec	k Hole								
Site C	ode: 🕑		313	3								
Desig	nation Stat	us: 🕐	SSS	I								
Distar	nce from In	stallation (m): 🕐	590)5								
Recep	otor Type:		Hat	bitat								
Grid F	Reference:		483	965.2,5026	92.8							
Met S	ite: 💿		CHI	UR								
Run N	Node: 🕐		Cor	iservative								
PM ₁₀	Percentile:	0	Ave	erage								
Installa	ation Infor	nation 🕐										
No.	Name		No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	PM ₁₀	Conc Odour (Ou/m3
1	High Farn	n	1	1	-	0.71	-	0.01	0.06	0.004	-	-
Total [Depositions	/Concentrations and	Exceedance	es 😢								
Conce	ntrations/	Depositions and Crit	tical	NH ₃		N Dep.		Acid Dep.		PM ₁₀	Od	our
	/Levels			(µg/m3)		(kg N/ha/j	yr) (kEq H+/ha	/yr)	(µg/m3)	(Ou	ı/m3)
Proces	s Contribut	ion (PC) at receptor e	dge	0.01		0.08		0.005		-	-	
				1.00		28.42		69 (N·1 3	4 S:0.35)	-	-	
Backgr	round conce	entration at receptor e	dge 🕐	1.00		20.42						
-			dge 🕐	1.00		28.5		1.69		-	-	
Predic	ted Enviro		dge 🕑							-	-	
Predic Conce	ted Enviro ntration/D	nmental	age 🕢				1			-	-	
Predic Conce Enviror	ted Enviro ntration/D	nmental eposition (PEC) ③	age 🕖	1.01		28.5	r	1.69		-	-	
Predic Conce Enviror	nmental As	nmental eposition (PEC) ③	age 🕢	1.01 Lower: 1		28.5 5.0 Broad-lea	r ved,	naxN: 0.78		-	-	
Predic Conce Enviror	nmental As	nmental eposition (PEC) ③	age 🕖	1.01 Lower: 1 Upper: 3		28.5 5.0 Broad-lear mixed and	r ved, lyew	naxN: 0.78 naxS: 0.48 ninN: 0.29		-	-	
Predic Conce Enviror	nmental As	nmental eposition (PEC) ③	age @	1.01 Lower: 1 Upper: 3		28.5 5.0 Broad-lea	r ved, I yew	naxN: 0.78	and	-	-	
Predic Conce Enviror	nmental As	nmental eposition (PEC) ③	age ø	1.01 Lower: 1 Upper: 3		28.5 5.0 Broad-lea mixed and woodland	ved, I yew I s	1.69 naxN: 0.78 naxS: 0.48 ninN: 0.29 Fen marsh :	and vland	-	-	

sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a	Conc) NH₃ (µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	PM ₁₀	Conc Odour (Ou/m3)
1	1	-	0.71	-	0.01	0.06	0.004	-	-
and Exceedan	ces (2)								
Critical	NH₃ (µg/m3)					/yr)	РМ ₁₀ (µg/m3)		our u/m3)
tor edge	0.01		0.08	c	0.005		-	-	
tor edge 💿	1.00		28.42	1	1.69 (N:1.3	4 S:0.35)	-	-	
•	1.01		28.5	1	1.69		-	-	
edicted Environmental oncentration/Deposition (PEC) vironmental Assessment Level Critical Load / Level		per: 3 Broad mixed		r aved, dyew F	maxN: 0.78 maxS: 0.48 minN: 0.29 Fen marsh and swamp - lowland		-	-	
			ALTERN	ATIVE C	RITICAL LO	AD INFO			
			2%	1	1%		-	-	
			570%	2	218%		-	-	
	Upper: No		23.50	c).91		-	-	
	1 c and Exceedance I Critical otor edge otor edge (2)	Image: sources sources 1 1 and Exceedances (?) NH3 (µg/m3) itor edge 0.01 itor edge (?) 1.00 1.01 1.01 ? Lower: 1 Upper: 3 ? Lower: 1 Upper: 0 Lower: 1 Upper: 34 Lower: 1 Upper: 34	sources sources 1 1 and Exceedances 1 I Critical NH3 (µg/m3) stor edge 0.01 stor edge 1.00 1.00 1.01 Image: Stor edge 1.00 1.01 1 Image: Stor edge 1.00 1.01 1 Image: Stor edge 1.00 1.01 1 Image: Stor edge 1.00 Image: Stor edge 1.00	sources i i i 1 1 - 0.71 i Critical NH3 (µg/m3) N Dep. (kg N/ha) I Critical NH3 (µg/m3) N Dep. (kg N/ha) Itor edge 0.01 0.08 itor edge 1.00 28.42 1.01 28.5 Image: State of the st	sources i i i i 1 1 - 0.71 - and Exceedances if Image: sources if	sources i.v. i.v. i.v. (ugim3) 1 1 - 0.71 - 0.01 and Exceedances 17 I Critical NH3 (ugim3) N Dep. (kg N/halyr) Acid Dep. (kEq H+/hal 0.005 itor edge 0.01 0.08 0.005 1.69 1.69 itor edge 1.00 1.01 28.42 1.69 1.69 1.134 itor edge 1.00 1.01 28.5 1.69 1.69 1.69 itor edge 3 1.01 5.0 maxN: 0.78 maxS: 0.48 minN: 0.29 itor edge 3 1.00 1.00 1.00 1.00 1.00 itor edge 3 1.00 1.00 1.00 1.00 1.00 itor edge 3 1.00 1.00	sources image: sources	sources sources image: sources	sources sources image: sources

Beast Cliff SSSI

	ation Beast Cliff - Whitby (Robin Hood	's Bay) (SAC	9	✓ ②						
Region:		En	igland								
Site Name:		Be	east Cliff - W	hitby	(Robin Ho	od`s Bay)				
Site Code:	3	UP	(0030086								
Designatio	n Status: 🕐	SA	NC .								
Distance fr	rom Installation (m): 🕑	76	81								
Receptor T		Ha	abitat								
Grid Refer			5216,504558	.4							
Met Site: (-		HUR								
Run Mode:			onservative								
PM ₁₀ Perce		Av	erage								
Installation	Information 🕐										
No. Nan	le	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a)	Conc NH₃ (µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	PM ₁₀	Conc Odour (Ou/m
1 Hig	h Farm	1	1	-	0.71	-	0.01	0.03	0.002	-	-
Total Depos	sitions/Concentrations and	Exceedance	ces (?)		-		1				
Concentrat	tions/Depositions and Crit	tical	NH ₃		N Dep.		Acid Dep.		PM10	Od	our
Loads/Leve			(µg/m3)		(kg N/ha/		kEq H+/ha	i/yr)	(µg/m3)	(01	ı/m3)
Process Co	ntribution (PC) at receptor e	dge	0.01		0.05	C	0.004		-	-	
Background	concentration at receptor e	edge 💿	0.72		13.58	1	.23 (N:0.9	7 S:0.26)	-	-	
Dradicted F	Invironmental		0.73		13.63	1	.23		-	-	
	ion/Deposition (PEC) ③										
	tal Assessment Level bad / Level 🕑		Lower: 1 Upper: 3		Vegetated cliffs of th Atlantic a Baltic coa	e s nd	No sensitiv species at t	e habitat or his site	-	-	
						I					
					ALTERN	ATIVE C	RITICAL LO	AD INFO	1		

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a)	Conc NHs (µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3	
1	High Farm	1	1	-	0.71	-	0.01	0.03	0.002	-	-	
Total De	epositions/Concentrat	tions and Exceedance	es 🕐									
Concer Loads/l	ntrations/Depositions Levels	and Critical	NH₃ (µg/m3)		l Dep. kg N/ha/		Acid Dep. kEq H+/ha	/yr)	ΡM ₁₀ (µg/m3)		lour u/m3)	
Process	Contribution (PC) at re	eceptor edge	0.01	c	0.05	c	0.004		-	-		
Backgro	ound concentration at re	eceptor edge 🕑	0.72	1	3.58	1	.23 (N:0.9	7 S:0.26)	-	-	-	
	ed Environmental ntration/Deposition (P	EC) 🖲	0.73	1	3.63	1	.23		-	-		
	mental Assessment Le al Load / Level ℗	vel	Lower: 1 Upper: 3 (?)	0 /	/egetated liffs of the Atlantic ar Baltic coa	e s nd sts	No sensitive species at t	his site	-	-		
					ALTERN	ATIVE C	RITICAL LO	AD INFO				
USE O	WN THRESHOLDS?											
% of rel	evant standard PC 🖲		Lower: 19 Upper: 09	- I.	n/a	r	n/a		-	-		
% of rel	evant standard PEC 🖲		Lower: 73 Upper: 24		n/a	r	n/a		-	-		
EXCEE	DANCE 🕑		Lower: No exceedan Upper: No exceedan	ce	ı/a	r	n/a		-	-		

Newtondale SSSI

Site Ir	nformation	Newtondale (SSSI)				×	(2)							
Regi	on:		Eng	land										
Site	Name:		Nev	/tondale										
Site	Code: 🕐		317	2										
Desig	gnation Stat	us: 🕐	SSS											
Dista	nce from In	stallation (m): 🕐	837	4										
Rece	ptor Type:		Hab	itat										
Grid	Reference:		484	665.8,4993	46.8									
Met 9	Site: 🕐		CHU	JR										
Run /	Mode: 🕐		Con	servative										
PM ₁₀	Percentile:		Ave	rage										
Instal	lation Inform	nation 🕲												
No.	Name		No. of sources	No. of new sources	PM ₁₀ (t/a)		NH ₃ (t/a)	Odou (kOu/	a) NH	nc I₃ g/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3
1	High Farn	1	1	1	-		0.71	-	0	,,	0.03	0.002	-	-
Total	Depositions	/Concentrations and	Exceedance	es 🕐										
Conc	entrations/l	Depositions and Crit	tical	NH3		N	Dep.		Acid	Dep.		PM10	Od	our
	s/Levels			(µg/m3)			, N/ha/y	/r)		H+/ha	/yr)	(µg/m3)	(0	u/m3)
Proce	ss Contribut	ion (PC) at receptor e	dge	0.00		0.0	0		0.000)		-	-	
Backg	round conce	entration at receptor e	dge 💿	0.72		26.	46		1.53	(N:1.2	D S:0.33)	-	-	
Dradi	cted Enviro	nmontal		0.72		26.	46		1.53			-	-	
		eposition (PEC) (2)												
Enviro	onmental As	sessment Level		Lower: 1		5.0			maxN	1: 0.39		-	_	
	tical Load / L			Upper: 3						0.17				
				(?)			ad-leav							
							ced and odland	yew		: 0.22				
				1		wo	odiand			narsh		1		
									swan	ıp - lov	vland			

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	PM ₁₀	Conc Odour (Ou/m3)
1	High Farm	1	1	-	0.71	-	0	0.03	0.002	-	-
Total	Depositions/Concentration	s and Exceedance	es (2)								
	entrations/Depositions and s/Levels	l Critical	NH₃ (µg/m3)		N Dep. (kg N/ha/		Acid Dep. kEq H+/ha	ı/yr)	PM ₁₀ (μg/m3)		lour u/m3)
Proce	ess Contribution (PC) at recep	otor edge	0.00		0.00	c	0.000		-	-	
Backg	ground concentration at recep	otor edge 🕑	0.72	:	26.46	1	1.53 (N:1.2	0 S:0.33)	-	-	
	icted Environmental entration/Deposition (PEC)	•	0.72		26.46	1	1.53		-	-	
	onmental Assessment Level tical Load / Level 🖲		Lower: 1 Upper: 3		5.0 Broad-lea mixed and woodland	ved, Jyew f	maxN: 0.39 maxS: 0.17 minN: 0.22 Fen marsh swamp - lov	and	-	-	
					ALTERN	ATIVE C	RITICAL LO	DAD INFO			
USE	OWN THRESHOLDS?										
% of I	relevant standard PC 🖲		Lower: 09 Upper: 09		0%	C)%		-	-	
% of I	relevant standard PEC 🖲		Lower: 72 Upper: 24		529%	3	392%		-	-	
EXCE	EEDANCE 🖲		Lower: No exceedan Upper: No exceedan	ice o	21.46	1	1.14		-	-	

Arnecliff and Park Hole Woods SAC

Site Ir	formation Arnecliff and Park H	lole Woods (S	AC)		•						-
Regio	on:	Eng	land								
Site	Name:	Arn	ecliff and F	Park Ho	ole Woods						
Site	Code: 🕲	UKO	030142								
Desig	gnation Status: 🕑	SAC									
Dista	nce from Installation (m): 🕑	865	7								
	ptor Type:		itat								
	Reference:		564.1,5049	02							
	Site: 🕐	CHI									
	Mode: 🕑		servative								
	Percentile: 🕐	Ave	rage	_							
Install	lation Information 🖲										
No.	Name	No. of	No. of	PM ₁₀		Odour		Dep N	Dep Acid		Conc
		sources	new sources	(t/a)	(t/a)	(kOu/a	 NH₈ (µg/m3) 	(kg/ha/yr)	(kEq H+/ha/yr)	PM ₁₀ (µg/m3)	Odour (Ou/m3)
1	High Farm	1	1	-	0.71	-	0	0.03	0.002	-	-
Total	Depositions/Concentrations an	d Exceedance	es 💿								
Conce	entrations/Depositions and Cr	itical	NH ₃		N Dep.		Acid Dep.		PM ₁₀	Ode	our
Loads	s/Levels		(µg/m3)		(kg N/ha/)		(kEq H+/ha	/yr)	(µg/m3)	(Ou	ı/m3)
Proce	ss Contribution (PC) at receptor	odeo									
Backo		eage	0.00		0.00		0.000		-	-	
	round concentration at receptor	-	0.00 0.84		0.00 29.68		0.000 2.59 (N:2.1)	2 S:0.47)	-	-	
-		-				:		2 S:0.47)	-	-	
Predi	round concentration at receptor cted Environmental entration/Deposition (PEC) 🕐	-	0.84		29.68	:	2.59 (N:2.1)	2 S:0.47)	- -	-	
Predi Conce	cted Environmental	-	0.84		29.68		2.59 (N:2.1)		-		
Predic Conce Enviro	cted Environmental entration/Deposition (PEC) 🕑	-	0.84		29.68 29.68		2.59 (N:2.1) 2.59 maxN: 1.36		-	-	
Predic Conce Enviro	cted Environmental entration/Deposition (PEC) ③	-	0.84 0.84 Lower: 1		29.68 29.68 10.0 Old sessile	e oak	2.59 (N:2.1) 2.59 maxN: 1.36 maxS: 1.15		-	-	
Predic Conce	cted Environmental entration/Deposition (PEC) ③	-	0.84 0.84 Lower: 1 Upper: 3		29.68 29.68 10.0 Old sessile woods with	e oak h llex	2.59 (N:2.1) 2.59 maxN: 1.36 maxS: 1.15 minN: 0.21		-	-	
Predic Conce Enviro	cted Environmental entration/Deposition (PEC) ③	-	0.84 0.84 Lower: 1 Upper: 3		29.68 29.68 10.0 Old sessile	e oak h llex num	2.59 (N:2.1) 2.59 maxN: 1.36 maxS: 1.15	oak woods		-	
Predi Conce Enviro	cted Environmental entration/Deposition (PEC) ③	-	0.84 0.84 Lower: 1 Upper: 3		29.68 29.68 10.0 Old sessile woods with and Blech	e oak h Ilex num sh	2.59 (N:2.1) 2.59 maxN: 1.36 maxS: 1.15 minN: 0.21 Old sessile	oak woods d n the		-	

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH ₈ (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3	Conc Odour () (Ou/m3)
1	High Farm	1	1	-	0.71	-	0	0.03	0.002	-	-
Total	Depositions/Concentrations	s and Exceedance	es 🕐								
	entrations/Depositions and s/Levels	l Critical	NH3 (µg/m3)		N Dep. (kg N/ha/		Acid Dep. (kEq H+/ha	a/yr)	РМ ₁₀ (µg/m3))dour Ou/m3)
Back <u>o</u> Predi	ess Contribution (PC) at recep ground concentration at recep cted Environmental	otor edge 🕑	0.00 0.84 0.84		0.00 29.68 29.68		0.000 2.59 (N:2.1 2.59	2 S:0.47)	- -	-	
Enviro	entration/Deposition (PEC)		Lower: 1 Upper: 3		10.0 Old sessil woods wit and Blech in the Briti Isles	e oak h llex num ish	maxN: 1.36 maxS: 1.15 minN: 0.21 Old sessile with Ilex an Blechnum i British Isles	oak woods d n the	- -	-	
USE	OWN THRESHOLDS?										
% of r	relevant standard PC ③		Lower: 09 Upper: 09	-	0%		0%		-	-	
% of r	relevant standard PEC ③		Lower: 84 Upper: 28		297%		190%		-	-	
EXCE	EEDANCE 🖲		Lower: No exceedar Upper: No exceedar	ice o	19.68		1.23		-	-	

Arnecliff and Park Hole Woods SSSI

												-
Site Inf	formation	Amecliff & Park Hole	Woods (SS	SI)		•						
Regior	n:		Eng	land								
Site N	ame:		Arr	ecliff & Pa	rk Hole	e Woods						
Site C	ode: 🕑		408	88								
Design	nation Stat	us: 🕐	SSS	l.								
Distan	ice from In	stallation (m): 💿	865	7								
Recep	otor Type:		Hal	bitat								
	Reference:		479	563.9,5049	901.8							
Met Si			CH									
	ode: 🕑	-		nservative								
	Percentile:		Ave	erage								
Installa	tion Infor	mation 🕐										
No.	Name		No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odou (kOu/		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3)
1	High Farn	n	1	1	-	0.71	-	0	0.03	0.002	-	-
Total D	epositions	Concentrations and	Exceedanc	es 💿		-		-1				
	ntrations/l 'Levels	Depositions and Cri	tical	NH₃ (µg/m3)		N Dep. (kg N/ha/	yr)	Acid Dep. (kEq H+/ha	ı∕yr)	РМ ₁₀ (µg/m3)		lour u/m3)
Proces	s Contribut	ion (PC) at receptor e	dge	0.00		0.00		0.000		-	-	
Backon	ound conce	entration at receptor e	dae 🕑	0.84		29.68		2.59 (N:2.1)	2IS:0.47)	-	-	
-			-	0.84		29.68		2.59	· · ·	_	-	
	ted Enviro ntration/D	nmental eposition (PEC) (?)				20.00		2.00				
	nmental As cal Load / L	sessment Level .evel ③		Lower: 1 Upper: 3		5.0 Broad-lea mixed and woodland	d yew	maxN: 1.36 maxS: 1.15 minN: 0.21 Broad-leave and yew wo	ed, mixed	-	-	
								CRITICAL LO				

No. Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	PM ₁₀	Conc Odour (Ou/m3
1 High Farm	1	1	-	0.71	-	0	0.03	0.002	-	-
Total Depositions/Concentrations	and Exceedance	ces 🕐								
Concentrations/Depositions and Loads/Levels	Critical	NH₃ (µg/m3)		N Dep. kg N/ha/j		Acid Dep. kEq H+/ha	/yr)	PM ₁₀ (μg/m3)		our 4/m3)
Process Contribution (PC) at recep	tor edge	0.00	c	0.00	0	0.000		-	-	
Background concentration at recep	tor edge 🕐	0.84	2	29.68	2	2.59 (N:2.12	2 S:0.47)	-	-	
Predicted Environmental Concentration/Deposition (PEC)	3	0.84	2	29.68	2	2.59		-	-	
Environmental Assessment Level or Critical Load / Level 🕑		Lower: 1 Upper: 3	E	5.0 Broad-lea nixed and voodland	ved, Iyew I	maxN: 1.36 maxS: 1.15 minN: 0.21 Broad-leave and yew wo	ed, mixed	-	-	
		_	(ALTERN	ATIVE C	RITICAL LO	DAD INFO			
USE OWN THRESHOLDS?										
% of relevant standard PC 🖲		Lower: 0% Upper: 0%)%	C)%		-	-	
% of relevant standard PEC 🖲		Lower: 84 Upper: 28		594%	1	190%		-	-	
EXCEEDANCE (9)		Lower: No exceedan Upper: No exceedan	ice D	24.68	1	1.23		-	-	

Fen Bog SAC

Site Information	Fen Bog (SAC)				•						
Region:		Engl	and								
Site Name:		Fen	Bog								
Site Code: 💿		UKO	030332								
Designation Stat	us: 🕐	SAC									
Distance from In	stallation (m): 💿	9291	1								
Receptor Type:		Hab	itat								
Grid Reference:		4854	427.6,4981	08.4							
Met Site: 🔞		CHU	R								
Run Mode: 🕑		Cons	servative								
PM ₁₀ Percentile:	(?)	Aver	rage								
Installation Inform	mation 🕐										
No. Name		No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a)	Conc NH₃ (µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3)
1 High Farn	n	1	1	-	0.71	-	0	0.02	0.001	-	-
Total Depositions	/Concentrations and	Exceedance	s (2)		1			,		1	1
Concentrations/ Loads/Levels	Depositions and Crit	ical	NH₃ (µg/m3)		N Dep. (kg N/ha/j		loid Dep. kEq H+/ha	/yr)	РМ ₁₀ (µg/m3)		our ı/m3)
Process Contribut	ion (PC) at receptor e	dge	0.00	(0.00	C	.000		-	-	
Background conce	entration at receptor e	dge 💿	0.65	1	16.66	1	.53 (N:1.19	9 S:0.34)	-	-	
Predicted Enviro Concentration/D	nmental eposition (PEC) ③	-	0.65	1	16.66	1	.53		-	-	
Environmental As or Critical Load / L			Lower: 1 Upper: 3	1	10.0		naxN: 0.60 naxS: 0.28		-	-	
			•		Transition mires and	n	ninN: 0.32				
				4	quaking b		ransition n Juaking bog				

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3)
1	High Farm	1	1	-	0.71	-	0	0.02	0.001	-	-
Total [Depositions/Concentrations and	Exceedance	es 😨								
	entrations/Depositions and Crit /Levels	tical	NH3 (µg/m3)		N Dep. (kg N/ha/j		Acid Dep. (kEq H+/ha	/yr)	РМ ₁₀ (µg/m3)		lour u/m3)
Backgr Predic Conce Enviro	as Contribution (PC) at receptor e round concentration at receptor e cted Environmental entration/Deposition (PEC) (?) nmental Assessment Level ical Load / Level (?)	-	0.00 0.65 0.65 Lower: 1 Upper: 3	-	0.00 16.66 16.66 10.0 Transition mires and quaking be	ogs	0.000 1.53 (N:1.1 1.53 maxN: 0.60 maxS: 0.28 minN: 0.32 Transition n quaking bog	nires and	-	-	
USE	OWN THRESHOLDS?				ALTERNA	TIVE C	RITICAL LO	AD INFO		_	
% of re	elevant standard PC 🖲		Lower: 0% Upper: 0%	-	0%		0%		-	-	
% of re	elevant standard PEC 🖲		Lower: 65 Upper: 22		167%		255%		-	-	
EXCE	EDANCE 🖲		Lower: No exceedan Upper: No exceedan	ce o	6.66		0.93		-	-	

3.2 Appendix 2 – SCAIL modelling results associated with a slurry tank forming a crust

NYM SSSI

Regior	n:	Eng	land									
Site N	lame:	Nor	th York Mo	ors								
Site C	ode: 💿	400	3									
Design	nation Status: 🕲	SSS	I									
Distan	nce from Installation (m): 💿	109	0									
Recep	otor Type:	Hat	oitat									
Grid R	Reference:	488	497.7,5061	07.2								
Met Si	ite: 🕐	CH	JR									
Run M	Node: 🕑	Cor	iservative									
PM ₁₀ F	Percentile: 💿	Ave	rage									
Installa	ation Information 🕐											
No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odou (kOu	/a)	Conc NH₃ (µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	PM10	Conc Odour (Ou/m3)
1	High Farm	1	1	-	0.88	-		0.16	0.84	0.056	-	-
Total D	Depositions/Concentrations an	d Exceedance	es 😨				,					
			es 🕲		N Dep.		Aci	d Dep.		PM ₁₀	0	dour
Conce	Depositions/Concentrations an Intrations/Depositions and Cr /Levels		1		N Dep. (kg N/ha/j			id Dep. iq H+/ha/y	yr)	PM ₁₀ (µg/m3)		dour Du/m3)
Conce Loads/	ntrations/Depositions and Cr /Levels	itical	NH ₃ (µg/m3)		(kg N/ha/	yr)	(kE	q H+/ha/y	ער)			
Conce Loads/ Proces	Intrations/Depositions and Cr /Levels is Contribution (PC) at receptor	i tical edge	NH₃ (µg/m3) 0.16		(kg N/ha/) 0.83	yr)	(kE	9 H+/ha /)				
Conce Loads/ Proces	ntrations/Depositions and Cr /Levels	i tical edge	NH ₃ (µg/m3) 0.16 1.14		(kg N/ha/) 0.83 15.82	yr)	(KE 0.05 1.40	9 H+/ha/ 56 D (N:1.13				
Concer Loads/ Proces Backgr Predict	Intrations/Depositions and Cr /Levels is Contribution (PC) at receptor	i tical edge	NH₃ (µg/m3) 0.16		(kg N/ha/) 0.83	yr)	(kE	9 H+/ha/ 56 D (N:1.13				
Concer Loads/ Proces Backgr Predict Concer	Intrations/Depositions and Or /Levels is Contribution (PC) at receptor round concentration at receptor ted Environmental	i tical edge	NH ₃ (µg/m3) 0.16 1.14		(kg N/ha/) 0.83 15.82	yr)	(kE 0.05 1.40 1.46	9 H+/ha/ 56 D (N:1.13				
Concer Loads/ Proces Backgr Predict Concer Enviror	ntrations/Depositions and Cr /Levels is Contribution (PC) at receptor round concentration at receptor ted Environmental intration/Deposition (PEC) ③	i tical edge	NH₃ (µg/m3) 0.16 1.14 1.3		(kg N/ha/) 0.83 15.82 16.65	yr)	(kE 0.05 1.40 1.46 max	:q H+/ha / <u>)</u> 56 0 (N:1.13 6 xN: 0.79				
Concer Loads/ Proces Backgr Predict Concer Enviror	Intrations/Depositions and Or Levels is Contribution (PC) at receptor round concentration at receptor ted Environmental intration/Deposition (PEC) () inmental Assessment Level	i tical edge	NH ₃ (µg/m3) 0.16 1.14 1.3		(kg N/ha/) 0.83 15.82 16.65 10.0 Dwarf shri	yr) ub	(kE 0.05 1.40 1.46 max	4 H+/ha/ 56 0 (N:1.13) 6 xN: 0.79 xS: 0.15				
Concer Loads/ Proces Backgr Predict Concer Enviror	Intrations/Depositions and Or Levels is Contribution (PC) at receptor round concentration at receptor ted Environmental intration/Deposition (PEC) () inmental Assessment Level	i tical edge	NH ₃ (µg/m3) 0.16 1.14 1.3 Lower: 1 Upper: 3		(kg N/ha/ 0.83 15.82 16.65 10.0	ub bland	(kE 0.05 1.40 1.40 max max	x N: 0.79 xN: 0.50 xN: 0.50	S:0.27)			
Concer Loads/ Proces Backgr Predict Concer Enviror	Intrations/Depositions and Or Levels is Contribution (PC) at receptor round concentration at receptor ted Environmental intration/Deposition (PEC) () inmental Assessment Level	i tical edge	NH ₃ (µg/m3) 0.16 1.14 1.3 Lower: 1 Upper: 3		(kg N/ha/) 0.83 15.82 16.65 10.0 Dwarf shri	ub pland	(kE 0.05 1.40 1.40 max max	56 0 (N:1.13) 6 xN: 0.79 xS: 0.15 N: 0.50 arf shrub	S:0.27)			
Concer Loads/ Proces Backgr Predict Concer Enviror	Intrations/Depositions and Or Levels is Contribution (PC) at receptor round concentration at receptor ted Environmental intration/Deposition (PEC) () inmental Assessment Level	i tical edge	NH ₃ (µg/m3) 0.16 1.14 1.3 Lower: 1 Upper: 3		(kg N/ha/) 0.83 15.82 16.65 10.0 Dwarf shri heath - up	ub bland	(KE 0.05 1.40 1.46 max max mini Dwa upla	56 0 (N:1.13) 6 xN: 0.79 xS: 0.15 N: 0.50 arf shrub	S:0.27) heath -			

No. Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	PM ₁₀	Conc Odour (Ou/m3)
1 High Farm	1	1	-	0.88	-	0.16	0.84	0.056	-	-
Total Depositions/Concentrations an	d Exceedanc	es 🕐								
Concentrations/Depositions and Cr Loads/Levels	itical	NH₃ (µg/m3)		N Dep. (kg N/ha/		icid Dep. kEq H+/ha	/yr)	PM ₁₀ (µg/m3)		dour)u/m3)
Process Contribution (PC) at receptor	edge	0.16		0.83	a	.056		-	-	
Background concentration at receptor	edge 🕐	1.14		15.82	1	.40 (N:1.13	S:0.27)	-	-	
Predicted Environmental Concentration/Deposition (PEC) ③		1.3		16.65	1	.46		-	-	
Environmental Assessment Level or Critical Load / Level 🕐		Lower: 1 Upper: 3 (?)		10.0 Dwarf shr heath - up	ub bland n U	naxN: 0.79 naxS: 0.15 ninN: 0.50 warf shrub pland RITICAL L		-	-	
USE OWN THRESHOLDS?										
% of relevant standard PC 🖲		Lower: 16 Upper: 59		8%	8	%		-	-	
% of relevant standard PEC ③		Lower: 13 Upper: 43		166%	1	85%		-	-	
EXCEEDANCE (9)		Lower: 0. Upper: No exceedan	0	6.65	C	.67		-	-	
Project Notes										

NYM SPA

Reg	ion:	En	gland								
Site	Name:	No	rth York Mo	ors							
Site	Code: 🕐	UK	9006161								
Des	ignation Status: 💿	SP	A								
Dist	tance from Installation (m): 💿	10	91								
Rec	eptor Type:	Ha	bitat								
Grid	d Reference:	48	8496,506105	5.8							
Met	Site: 💿	CH	UR								
Run	Mode: 💿	Co	nservative								
PM ₁	10 Percentile: 💿	Av	erage								
Insta	Illation Information 🕐										
No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NHs (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3
1	High Farm	1	1	-	0.88	-	0.16	0.84	0.056	-	-
							_	-			
Tota	I Depositions/Concentrations a	and Exceedance	es 🕐								
-	l Depositions/Concentrations				N Don		heid Don		DM.		
Cond	l Depositions/Concentrations a centrations/Depositions and (ds/Levels		es (?) NH ₃ (µg/m3)		N Dep. (kg N/ha/		Acid Dep. kEq H+/ha	и/ уг)	PM ₁₀ (μg/m3)		dour)u/m3)
Cond Load	centrations/Depositions and (Critical	NH ₃			yr) (ı/yr)			
Conc Load	centrations/Depositions and (ds/Levels	Critical or edge	NH₃ (μg/m3)		(kg N/ha/	yr) (kEq H+/ha				
Conc Load Proc Back	centrations/Depositions and data and da	Critical or edge	NH₃ (µg/m3) 0.16 1.14		(kg N/ha/ 0.83 15.82	ут) ((1	kEq H+/ha).056 1.40 (N:1.1				
Conc Load Proc Back Pred	est Contribution (PC) at recepto	Dritical or edge or edge ③	NH₃ (µg/mЗ) 0.16		(kg N/ha/ 0.83	ут) ((1	kEq H+/h a				
Conc Load Proc Back Pred Conc	centrations/Depositions and dis/Levels ess Contribution (PC) at receptor ground concentration at receptor licted Environmental centration/Deposition (PEC) @	Dritical or edge or edge ③	NH ₃ (µg/m3) 0.16 1.14 1.3		(kg N/ha/ 0.83 15.82 16.65	yrr) (1 1	kEq H+/ha 0.056 1.40 (N:1.1 1.46	3 S:0.27)			
Conc Load Proc Back Pred Conc Envir	estrations/Depositions and das/Levels ess Contribution (PC) at receptor ground concentration at receptor licted Environmental	Dritical or edge or edge ③	NH₃ (µg/m3) 0.16 1.14		(kg N/ha/ 0.83 15.82	yr) (1 1 1	KEq H+/ha 0.056 1.40 (N:1.1 1.46 maxN: 0.47	3 S:0.27)			
Conc Load Proc Back Pred Conc Envir	entrations/Depositions and dis/Levels ess Contribution (PC) at recept ground concentration at recept licted Environmental centration/Deposition (PEC) @	Dritical or edge or edge ③	NH ₃ (µg/m3) 0.16 1.14 1.3 Lower: 1		(kg N/ha/ 0.83 15.82 16.65	ут) (1 1 1 г г	KEq H+/ha 0.056 1.40 (N:1.1 1.46 maxN: 0.47 maxS: 0.15	3 S:0.27)			
Conc Load Proc Back Pred Conc Envir	entrations/Depositions and dis/Levels ess Contribution (PC) at recept ground concentration at recept licted Environmental centration/Deposition (PEC) @	Dritical or edge or edge ③	NH ₃ (µg/m3) 0.16 1.14 1.3 Lower: 1 Upper: 3		(kg N/ha/ 0.83 15.82 16.65 5.0 Pluvialis apricaria	yr) (1 1 1 1 1 1	1.40 (N:1.1 1.40 (N:1.1 1.46 maxN: 0.47 maxS: 0.15 minN: 0.18	3 S:0.27)			
Conc Load Proc Back Pred Conc Envir	entrations/Depositions and dis/Levels ess Contribution (PC) at recept ground concentration at recept licted Environmental centration/Deposition (PEC) @	Dritical or edge or edge ③	NH ₃ (µg/m3) 0.16 1.14 1.3 Lower: 1 Upper: 3		(kg N/ha/) 0.83 15.82 16.65 5.0 Pluvialis	yr) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	KEq H+/ha 0.056 1.40 (N:1.1 1.46 maxN: 0.47 maxS: 0.15	3 S:0.27)			
Conc Proc Back Pred Conc Envir	entrations/Depositions and dis/Levels ess Contribution (PC) at recept ground concentration at recept licted Environmental centration/Deposition (PEC) @	Dritical or edge or edge ③	NH ₃ (µg/m3) 0.16 1.14 1.3 Lower: 1 Upper: 3		(kg N/ha/ 0.83 15.82 16.65 5.0 Pluvialis apricaria (North-we Europe -	yr) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	kEq H+/ha 0.056 1.40 (N:1.1 1.46 maxN: 0.47 maxS: 0.15 minN: 0.18 Pluvialis ap North-wesl	3 S:0.27)			

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a	Conc) NH ₃ (µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3)
1	High Farm	1	1	-	0.88	-	0.16	0.84	0.056	-	-
Total D	epositions/Concentrations	s and Exceedance	ces (2)								
	ntrations/Depositions and /Levels	l Critical	NH₃ (µg/m3)		N Dep. (kg N/ha/j		Acid Dep. kEq H+/ha	/yr)	РМ ₁₀ (µg/m3)		lour u/m3)
Proces	s Contribution (PC) at recep	otor edge	0.16		0.83	c	0.056		-	-	
Backgr	ound concentration at recep	otor edge 🕑	1.14		15.82	1	.40 (N:1.1	3 S:0.27)	-	-	
	ted Environmental ntration/Deposition (PEC)	۲	1.3		16.65	1	.46		-	-	
	nmental Assessment Level cal Load / Level 🕐		Lower: 1 Upper: 3 (?)		5.0 Pluvialis apricaria (North-we Europe - breeding)	r stern p (naxN: 0.47 naxS: 0.15 ninN: 0.18 Pluvialis ap North-west Europe - br	ricaria ern eeding)	-	-	
USE	DWN THRESHOLDS?										
% of re	elevant standard PC 🕑		Lower: 16 Upper: 59		17%	1	3%		-	-	
% of re	elevant standard PEC 🖲		Lower: 13 Upper: 43		333%	5	311%		-	-	
EXCE	EDANCE 3		Lower: 0.3 Upper: No exceedan		11.65	C).99		-	-	

promar International

NYM SAC

Site Information North York Moors (S/	AC)			•						
Region:	Engl	and								
Site Name:	Nort	h York Mo	ors							
Site Code: 🕐	UKO	030228								
Designation Status: (?)	SAC									
Distance from Installation (m): 💿	1091	1								
Receptor Type:	Hab	itat								
Grid Reference:	4884	499,506107	7.6							
Met Site: ③	CHU	R								
Run Mode: 🕐	Cons	servative								
PM ₁₀ Percentile: 💿	Aver	rage								
Installation Information 🕲										
No. Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3)
1 High Farm	1	1	-	0.88	-	0.16	0.84	0.056	-	-
Total Depositions/Concentrations and	Exceedance	s (2)								
Concentrations/Depositions and Crit Loads/Levels	tical	NH3 (µg/m3)		N Dep. (kg N/ha/j		Acid Dep. kEq H+/ha/	yr)	PM ₁₀ (μg/m3)		our I/m3)
Loads/Levels		_			yr) (ут)			
Loads/Levels Process Contribution (PC) at receptor e	dge	(µg/m3)		(kg N/ha/	yr) (kEq H+/ha/				
Loads/Levels Process Contribution (PC) at receptor e Background concentration at receptor e	dge	(µg/m3) 0.16 1.14		(kg N/ha/) 0.83	уг) (С 1	kEq H+/ha / 0.056				
Loads/Levels Process Contribution (PC) at receptor e Background concentration at receptor e Predicted Environmental	dge	(µg/m3) 0.16		(kg N/ha/ 0.83 15.82	уг) (С 1	kEq H+/ha /).056 .40 (N:1.13				
Loads/Levels Process Contribution (PC) at receptor e Background concentration at receptor e Predicted Environmental Concentration/Deposition (PEC) ③ Environmental Assessment Level	dge	(µg/m3) 0.16 1.14 1.3 Lower: 1		(kg N/ha/ 0.83 15.82	ייע) (1 1 1	kEq H+/ha/).056 .40 (N:1.13 .46 naxN: 0.50				
Loads/Levels Process Contribution (PC) at receptor e Background concentration at receptor e Predicted Environmental Concentration/Deposition (PEC) ③ Environmental Assessment Level	dge	(µg/m3) 0.16 1.14 1.3 Lower: 1 Upper: 3		(kg N/ha/) 0.83 15.82 16.65 5.0	ייע) (1 1 1 ייייייייייייייייייייייייייייייי	kEq H+/ha/ 0.056 0.40 (N:1.13 0.46				
Loads/Levels Process Contribution (PC) at receptor e Background concentration at receptor e Predicted Environmental Concentration/Deposition (PEC) ③ Environmental Assessment Level	dge	(µg/m3) 0.16 1.14 1.3 Lower: 1		(kg N/ha/) 0.83 15.82 16.65	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	kEq H+/ha/).056 .40 (N:1.13 .46 naxN: 0.50				
Process Contribution (PC) at receptor e Background concentration at receptor e Predicted Environmental Concentration/Deposition (PEC) ③	dge	(µg/m3) 0.16 1.14 1.3 Lower: 1 Upper: 3		(kg N/ha/) 0.83 15.82 16.65 5.0	vr) (1 1 1 0 1 1 1 1 1	kEq H+/ha/ 0.056 0.40 (N:1.13 0.46 naxN: 0.50 naxS: 0.18	S:0.27)			
Loads/Levels Process Contribution (PC) at receptor e Background concentration at receptor e Predicted Environmental Concentration/Deposition (PEC) ③ Environmental Assessment Level	dge	(µg/m3) 0.16 1.14 1.3 Lower: 1 Upper: 3		(kg N/ha/) 0.83 15.82 16.65 5.0 Blanket bo	yr) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	kEq H+/ha/ 0.056 .40 (N:1.13 .46 naxN: 0.50 naxS: 0.18 ninN: 0.32	S:0.27)			

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odou (kOu/		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3
1	High Farm	1	1	-	0.88	-	0.16	0.84	0.056	-	-
Total D	Depositions/Concentration	ons and Exceedance	es 🕐								
	ntrations/Depositions a /Levels	and Critical	NH₃ (μg/m3)		N Dep. (kg N/ha/j		Acid Dep. (kEq H+/ha	i∕yr)	РМ ₁₀ (µg/m3)		our u/m3)
Proces	s Contribution (PC) at red	ceptor edge	0.16	c	0.83		0.056		-	-	
Backgr	round concentration at rec	ceptor edge 💿	1.14	1	15.82	1	1.40 (N:1.1	3 S:0.27)	-	-	
	ted Environmental ntration/Deposition (PE	C) 🖲	1.3	1	16.65	1	1.46		-	-	
	nmental Assessment Leve cal Load / Level ঔ	el	Lower: 1 Upper: 3 3		5.0 Blanket bo	ogs I	maxN: 0.50 maxS: 0.18 minN: 0.32 Blanket bog		-	-	
				[ALTERNA	TIVE	ERITICAL L	OAD INFO			
USE	DWN THRESHOLDS?										
% of re	elevant standard PC 🖲		Lower: 16 Upper: 5%		17%	1	12%		-	-	
% of re	elevant standard PEC 🖲		Lower: 13 Upper: 43		333%	:	292%		-	-	
EXCE	EDANCE 🖲		Lower: 0.3 Upper: No exceedan		11.65	(0.96		-	-	

Littlebeck Wood SSSI

site in	formation Littlebeck Wood (SS	SI)			~ (2)						
Regio	on:	Eng	land								
Site I	Name:	Litt	lebeck Woo	od							
Site (Code: 🕐	317	D								
Desig	nation Status: 💿	SSSI									
Dista	nce from Installation (m): 💿	214	5								
Rece	ptor Type:	Hab	itat								
Grid	Reference:	487	936.6,5049	04.9							
Met S	Site: 🕐	CHL	IR								
Run /	Mode: (2)	Con	servative								
PM ₁₀	Percentile: 💿	Ave	rage								
Install	ation Information 🕲										
No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odou (kOu/		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	PM10	Conc Odour (Ou/m3)
1	High Farm	1	1	-	0.88	-	0.05	0.41	0.027	-	-
Total I	Depositions/Concentrations an	d Exceedance	s (?)						•		
Conce											
	entrations/Depositions and Cr s/Levels	itical	NH₃ (µg/m3)		N Dep. (kg N/ha/)	/r)	Acid Dep. (kEq H+/ha	/yr)	PM ₁₀ (µg/m3)		our u/m3)
Loads			-			/r)		/yr)			
Loads Proces	ss Contribution (PC) at receptor	edge	(µg/m3)		(kg N/ha/y	/r)	(kEq H+/ha				
Loads Proces Backg	*/Levels ss Contribution (PC) at receptor round concentration at receptor	edge	(µg/m3) 0.05 0.80		(kg N/ha/y 0.39 27.30	/r)	(kEq H+/ha 0.026 1.53 (N:1.2				
Loads Proces Backg Predic	ss Contribution (PC) at receptor	edge	(µg/m3) 0.05		(kg N/ha/y 0.39	/17)	(kEq H+/ha				
Loads Proces Backg Predic Conce Enviro	s/Levels ss Contribution (PC) at receptor round concentration at receptor cted Environmental entration/Deposition (PEC) ③	edge	(µg/m3) 0.05 0.80 0.85 Lower: 1		(kg N/ha/y 0.39 27.30	rr)	(kEq H+/ha 0.026 1.53 (N:1.2 1.56 maxN: 2.08	1 S:0.32)			
Loads Proces Backg Predic Conce Enviro	*/Levels ss Contribution (PC) at receptor round concentration at receptor cted Environmental entration/Deposition (PEC) ③	edge	(µg/m3) 0.05 0.80 0.85 Lower: 1 Upper: 3		(kg N/ha/y 0.39 27.30 27.69 5.0	_	(KEq H+/ha 0.026 1.53 (N:1.2 1.56	1 S:0.32)			
Loads Proces Backg Predic Conce Enviro	s/Levels ss Contribution (PC) at receptor round concentration at receptor cted Environmental entration/Deposition (PEC) ③	edge	(µg/m3) 0.05 0.80 0.85 Lower: 1		(kg N/ha/) 0.39 27.30 27.69 5.0 Broad-leav	/ed,	(kEq H+/ha 0.026 1.53 (N:1.2 1.56 maxN: 2.08	1 S:0.32)			
Loads Proces Backg Predic Conce Enviro	s/Levels ss Contribution (PC) at receptor round concentration at receptor cted Environmental entration/Deposition (PEC) ③	edge	(µg/m3) 0.05 0.80 0.85 Lower: 1 Upper: 3		(kg N/ha/y 0.39 27.30 27.69 5.0	/ed,	(kEq H+/ha 0.026 1.53 (N:1.2 1.56 maxN: 2.08 maxS: 1.64	1 S:0.32)	(µg/m3) - - -		
Loads Proces Backg Predic Conce Enviro	s/Levels ss Contribution (PC) at receptor round concentration at receptor cted Environmental entration/Deposition (PEC) ③	edge	(µg/m3) 0.05 0.80 0.85 Lower: 1 Upper: 3		(kg N/ha/) 0.39 27.30 27.69 5.0 Broad-leav mixed and woodland	ved, yew	(kEq H+/ka 0.026 1.53 (N:1.2' 1.56 maxN: 2.08 maxS: 1.64 minN: 0.44	1 S:0.32) and upland	(µg/m3) - - -		

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a	Conc) NH ₃ (µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3)
1	High Farm	1	1	-	0.88	-	0.05	0.41	0.027	-	-
Total [Depositions/Concentrations and	d Exceedanc	es 🕑								
	entrations/Depositions and Cri /Levels	itical	NH₃ (µg/m3)		N Dep. (kg N/ha/j		Acid Dep. kEq H+/ha	/yr)	РМ ₁₀ (µg/m3)		dour)u/m3)
Proces	ss Contribution (PC) at receptor	edge	0.05	(0.39		0.026		-	-	
Backgi	round concentration at receptor	edge 💿	0.80	:	27.30	1	1.53 (N:1.21	1 S:0.32)	-	-	
	cted Environmental entration/Deposition (PEC) ③		0.85	:	27.69	1	1.56		-	-	
	nmental Assessment Level ical Load / Level 🕲		Lower: 1 Upper: 3	1	5.0 Broad-lea mixed and woodland	ved, Iyew	maxN: 2.08 maxS: 1.64 minN: 0.44 Acid grassla		-	-	
_					ALTERNA	ATIVE C	RITICAL LO	AD INFO			
USE	OWN THRESHOLDS?										
% of re	elevant standard PC 🖲		Lower: 59 Upper: 29		8%	1	1%		-	-	
% of re	elevant standard PEC 🕑		Lower: 85 Upper: 28		554%	7	75%		-	-	
EXCE	EDANCE 🕑		Lower: No exceedan Upper: No exceedan	nce o	22.69	-	0.52		-	-	
Projec	t Notes		1			I					

Whitby-Saltwick SSSI

Site Information Whitby-Saltwick (SS	SI)			• •						
Region:	End	land								
Site Name:	5	itby-Saltwic	-							
Site Code: (?)	320	-								
Designation Status: (2)	5551									
Distance from Installation (m): (2)	489									
Receptor Type:		o itat								
Grid Reference:		203.8.5113	08.2							
Met Site: @	CHL		/0.2							
Run Mode: (?)		servative								
PM ₁₀ Percentile: (2)		rage								
Installation Information (2)										
No. Name	No. of	No. of	PM ₁₀	NHs	Odour	Conc	Dep N	Dep Acid	Conc	Conc
	sources	new sources	(t/a)	(t/a)	(kOu/a)		(kg/ha/yr)		PM ₁₀ (μg/m3)	Odour (Ou/m3)
1 High Farm	1	1	-	0.88	-	0.01	0.07	0.005	-	-
Total Depositions/Concentrations and	Exceedance	es (2)								
Concentrations/Depositions and Crit Loads/Levels	ical	NH₃ (µg/m3)		N Dep. (kg N/ha/y		cid Dep. (Eq H+/ha)	'yr)	РМ ₁₀ (µg/m3)		our ı/m3)
Process Contribution (PC) at receptor e	dge	0.01		0.05	0.	004		-	-	
Background concentration at receptor e	dae 💿	0.50		9.66	0	91 (N:0.69	(S:0.22)	-	-	
	2	0.51		9.71		.91				
Predicted Environmental Concentration/Deposition (PEC) (2)		0.01		0.71					_	
Environmental Assessment Level or Critical Load / Level 🖲		Lower: 1 Upper: 3 ③		No sensitiv habitat or species at site	s	o sensitive pecies at th		-	-	
				ALTERNA	TIVE C	RITICAL LO	DAD INFO			
		-								

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odou (kOu/			Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m	- I (Conc Odour (Ou/m3)
1	High Farm	1	1	-	0.88	-	0.01		0.07	0.005	-	-	
Total	Depositions/Concentrations an	d Exceedance	es 🕐										
	entrations/Depositions and Cr s/Levels	itical	NH₃ (µg/m3)		N Dep. (kg N/ha/j		Acid De (kEq H+	-	/r)	РМ ₁₀ (µg/m3)		Odou (Ou/r	
Proce	ss Contribution (PC) at receptor	edge	0.01		0.05		0.004			-		-	
Backg	round concentration at receptor	edge 🕑	0.50		9.66		0.91 (N:	0.69	S:0.22)	-		-	
	cted Environmental entration/Deposition (PEC) 💿		0.51		9.71		0.91			-		-	
	onmental Assessment Level iical Load / Level 🕑		Lower: 1 Upper: 3 ?		No sensiti habitat or species at site	this	species	at thi		-		-	
USE	OWN THRESHOLDS?												
% of r	elevant standard PC 🖲		Lower: 19 Upper: 09	~	n/a		n/a			-		-	
% of r	elevant standard PEC 🖲		Lower: 51 Upper: 17		n/a		n/a			-		-	
EXCE	EDANCE (9)		Lower: No exceedan Upper: No exceedan	nce o	n/a		n/a			-		-	
Proje	ct Notes		<u> </u>										

Robin Hoods Bay SSSI

Site In	formation Robin Hoods Bay: M	law Wyke To I	Beast Cliff (SSSI)	•						
Site (Desig Dista Rece Grid Met 9 Run /	on: Name: Code: (?) gnation Status: (?) nce from Installation (m): (?) ptor Type: Reference: Site: (?) Wode: (?) Percentile: (?)	Rob 381/ 5551 5810 Hab 493 CHU Con	4 6 itat 713.2,5078	-	w Wyke To) Beast	Cliff				
Install	ation Information 🖲										
No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _S (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3
1	High Farm	1	1	-	0.88	-	0.01	0.08	0.005	-	-
Total	Depositions/Concentrations and	I Exceedance	es (?)								
	entrations/Depositions and Cri s/Levels	tical	NH₃ (µg/m3)		N Dep. (kg N/ha/y		Acid Dep. (kEq H+/ha	ı∕yr)	РМ ₁₀ (µg/m3)		our ı/m3)
Backg Predic	ss Contribution (PC) at receptor e round concentration at receptor e cted Environmental entration/Deposition (PEC) (?)	-	0.01 1.22 1.23		0.08 25.34 25.42	:	0.005 2.14 (N:1.8 2.15	1 S:0.33)	- -	- -	
	nmental Assessment Level ical Load / Level 🖲		Lower: 1 Upper: 3 ?		5.0 Broad-leav mixed and woodland	ved, yew	maxN: 2.79 maxS: 2.43 minN: 0.36 Broad-leave and yew wo	ed, mixed	-	-	

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NHs (t/a)	Odou (kOu/		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	PM ₁₀	Conc Odour) (Ou/m3
1	High Farm	1	1	-	0.88	-	0.01	0.08	0.005	-	-
Total	Depositions/Concentrations a	nd Exceedance	es 🕐								
	entrations/Depositions and C s/Levels	ritical	NH3 (µg/m3)		N Dep. (kg N/ha/	yr)	Acid Dep. (kEq H+/ha	ı/yr)	РМ ₁₀ (µg/m3)		dour Du/m3)
Proce	ess Contribution (PC) at recepto	redge	0.01		0.08		0.005		-	-	
Backg	ground concentration at recepto	r edge 💿	1.22		25.34		2.14 (N:1.8	1 S:0.33)	-	-	
	cted Environmental entration/Deposition (PEC) ③		1.23		25.42		2.15		-	-	
	onmental Assessment Level tical Load / Level ⊛		Lower: 1 Upper: 3		5.0 Broad-lea mixed and woodland	l yew	maxN: 2.79 maxS: 2.43 minN: 0.36 Broad-leave and yew wo	ed, mixed	-	-	
					ALTERN	ATIVE (ERITICAL L	DAD INFO			
USE	OWN THRESHOLDS?										
% of r	relevant standard PC 🖲		Lower: 19 Upper: 09	-	2%		0%		-	-	
% of r	relevant standard PEC 🖲		Lower: 12 Upper: 41		508%		77%		-	-	
EXCE	EDANCE 🖲		Lower: 0.3 Upper: No exceedan		20.42		-0.65		-	-	
Proje	ct Notes								1	- 1	

Biller Howe Dale SSSI

Site Information Biller Howe Dale (SS	SI)			v (2)						-
Region:	Engl	and								
Site Name:	Bille	er Howe Da	le							
Site Code: (2)	3310	D								
Designation Status: 🖲	SSSI									
Distance from Installation (m): 🗷	5835	5								
Receptor Type:	Habi	itat								
Grid Reference:	4914	424.1,5023	62.1							
Met Site: 🕐	CHU	R								
Run Mode: 🕑	Cons	servative								
PM ₁₀ Percentile: 💿	Aver	rage								
Installation Information 🕑										
No. Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odou (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3)
1 High Farm	1	1	-	0.88	-	0.01	0.08	0.005	-	-
Total Depositions/Concentrations and	Exceedance	s (?)		ŕ		·				
Concentrations/Depositions and Crit Loads/Levels	tical	NH₃ (µg/m3)		N Dep. (kg N/ha/j	yr)	Acid Dep. (kEq H+/ha	/yr)	РМ ₁₀ (µg/m3)		our ı/m3)
Process Contribution (PC) at receptor e	dge	0.01		0.08		0.005		-	-	
Background concentration at receptor e	dge 💿	0.95		25.62		1.43 (N:1.14	4 S:0.29)	-	-	
Predicted Environmental Concentration/Deposition (PEC) ③		0.96		25.7		1.43		-	-	
Environmental Assessment Level or Critical Load / Level ③		Lower: 1 Upper: 3		5.0 Broad-leav mixed and woodland	ved, Iyew	maxN: 0.61 maxS: 0.24 minN: 0.37 Fen marsh a swamp - lov	and	-	-	
				ALTERNA	TIVE (CRITICAL LO	DAD INFO			

Dep Acid Conc (kEq PM₁₀ H+/ha/yr) (µg/m No. of new source Conc Odour (Ou/m3) Name No. No. of sources PM₁₀ (t/a) NH_s (t/a) Odour Conc (kOu/a) NH₃ (µg/m3) Dep N (kg/ha/yr) 1 High Farm 1 1 0.88 0.01 0.08 0.005 -Total Depositions/Concentrations and Exceedances @ N Dep. (kg N/ha/yr) Acid Dep. (kEq H+/ha/yr) PM10 **Concentrations/Depositions and Critical** NH₃ Odour (Ou/m3) Loads/Levels (µg/m3) (µg/m3) Process Contribution (PC) at receptor edge 0.01 0.08 0.005 0.95 25.62 1.43 (N:1.14|S:0.29) Background concentration at receptor edge 📀 0.96 25.7 1.43 Predicted Environmental Concentration/Deposition (PEC) 🕐 Environmental Assessment Level or Critical Load / Level ? Lower: 1 Upper: 3 5.0 maxN: 0.61 maxS: 0.24 (?) Broad-leaved. minN: 0.37 mixed and yew woodland Fen marsh and swamp - lowland % of relevant standard PC 🕑 Lower: 1% 2% 2% Upper: 0% % of relevant standard PEC ③ Lower: 96% 514% 236% Upper: 32% EXCEEDANCE (2) Lower: No 20.70 0.82 exceedance Upper: No exceedance

Beck Hole SSSI

Region:	Eng	land								
Site Name:	Bec	k Hole								
Site Code: 🕐	313	3								
Designation Status: (2)	SSS									
Distance from Installation (m): (2)	590	5								
Receptor Type:	Hab	itat								
Grid Reference:	483	965.2,5026	92.8							
Met Site: 🕑	CHU	JR								
Run Mode: 🕑	Con	servative								
PM ₁₀ Percentile: 🕐	Ave	rage								
nstallation Information 🕐										
No. Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a	Conc) NHs (µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3
	1 d Exceedance	1 es (2)	-	0.88	-	0.01	0.07	0.005	-	-
fotal Depositions/Concentrations and Concentrations/Depositions and Cri	d Exceedance	1.		0.88 N Dep. (kg N/ha/j		0.01 Acid Dep. kEq H+/ha		0.005		- our 1/m3)
otal Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels	d Exceedance	NH3		N Dep.	/r) (Acid Dep.		PM ₁₀		
Fotal Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels Process Contribution (PC) at receptor e	d Exceedance tical	ни пробессиональной пробессиональном пробессиональном пробессиональном пробессиональном пробессиональном пробессиональном проб Пробессиональной пробессиональной пробессиональной пробессиональной пробессиональной пробессиональной пробессиональном пробессиональном пробессиональном пробессиональном пробессиональном пробессиональном пробессиональном пробессиональн		N Dep. (kg N/ha/y 0.08	/ r) (Acid Dep. kEq H+/ha	/yr)	PM ₁₀		
Fotal Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels Process Contribution (PC) at receptor e Background concentration at receptor e	d Exceedance tical	ез (2) NH ₃ (µg/m3) 0.01 1.00		N Dep. (kg N/ha/) 0.08 28.42	/ r) ((1	Acid Dep. KEq H+/ha).005 1.69 (N:1.34	/yr)	PM ₁₀		
Fotal Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels Process Contribution (PC) at receptor e Background concentration at receptor e Predicted Environmental	d Exceedance tical	ни пробессиональной пробессиональном пробессиональном пробессиональном пробессиональном пробессиональном пробессиональном проб Пробессиональной пробессиональной пробессиональной пробессиональной пробессиональной пробессиональной пробессиональном пробессиональном пробессиональном пробессиональном пробессиональном пробессиональном пробессиональном пробессиональн		N Dep. (kg N/ha/y 0.08	/ r) ((1	Acid Dep. kEq H+/ha	/yr)	PM ₁₀		
Total Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels Process Contribution (PC) at receptor e Background concentration at receptor e Predicted Environmental Concentration/Deposition (PEC) ③	d Exceedance tical	ез (2) NH ₃ (µg/m3) 0.01 1.00		N Dep. (kg N/ha/) 0.08 28.42	/ r) (1 1	Acid Dep. KEq H+/ha).005 1.69 (N:1.34	/ yr) 4 S:0.35)	PM ₁₀		
Fotal Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels Process Contribution (PC) at receptor e Background concentration at receptor e Predicted Environmental Concentration/Deposition (PEC) ()	d Exceedance tical	NH ₃ (µg/m3) 0.01 1.00 1.01		N Dep. (kg N/ha/y 0.08 28.42 28.5	/*) (1 1 1	Acid Dep. kEq H+/ha).005 1.69 (N:1.34	/ yr) 4 S:0.35)	PM ₁₀		
Fotal Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels Process Contribution (PC) at receptor e Background concentration at receptor e Predicted Environmental Concentration/Deposition (PEC) (?)	d Exceedance tical	NH3 (µg/m3) 0.01 1.00 1.01		N Dep. (kg N/ha/y 0.08 28.42 28.5	77) (((1 (1 (1 (1 (1))) (1)) (1)) (1)) (1)) (1)) ((1))) ((1))) ((1))) (1))) (1))) (1))) (1))) (1))) (1))) (1))) (1))) (1))) (1)))(1)))(1))((1))(1))((1	Acid Dep. KEq H+/ha).005 1.69 (N:1.34 1.69 naxN: 0.78	/ yr) 4 S:0.35)	PM ₁₀		
1 High Farm Total Depositions/Concentrations and Concentrations/Depositions and Criteds/Levels Process Contribution (PC) at receptor enditions Background concentration at receptor endities Predicted Environmental Concentration/Deposition (PEC) (*) Environmental Assessment Level or Critical Load / Level (*)	d Exceedance tical	NH3 (µg/m3) 0.01 1.00 1.01 Lower: 1		N Dep. (kg N/ha/y 0.08 28.42 28.5 5.0 Broad-leav	vr) ((((((() () () () (((((Acid Dep. KEq H+/ha 0.005 1.69 (N:1.34 1.69 naxN: 0.78 naxS: 0.48	/yr) 4 S:0.35) and	PM ₁₀		

No.	Name	No. of sources		PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a	Conc) NHs (µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3	Conc Odour) (Ou/m3
1	High Farm	1	1 -	-	0.88	-	0.01	0.07	0.005	-	-
Total I	Depositions/Concentrati	ons and Exceedance	es 🕐								
	entrations/Depositions a ;/Levels	and Critical	NH₃ (µg/m3)		N Dep. (kg N/ha/j		Acid Dep. kEq H+/ha	a/yr)	РМ ₁₀ (µg/m3))dour Du/m3)
Proces	ss Contribution (PC) at re	ceptor edge	0.01	C	0.08	c	0.005		-	-	
Backg	round concentration at re	ceptor edge 🕑	1.00	1	28.42	1	1.69 (N:1.3	4 S:0.35)	-	-	
	cted Environmental entration/Deposition (PE	C) 🕐	1.01	1	28.5	1	1.69		-	-	
	nmental Assessment Lev ical Load / Level 🕲	el	Lower: 1 Upper: 3 @	E	5.0 Broad-lea mixed and woodland	ved, iyew F	maxN: 0.78 maxS: 0.48 minN: 0.29 Fen marsh swamp - loo	and	-	-	
					ALTERNA	ATIVE C	RITICAL L	DAD INFO			
USE	OWN THRESHOLDS?										
% of re	elevant standard PC 🖲		Lower: 1% Upper: 0%		2%	1	1%		-	-	
% of re	elevant standard PEC 🖲		Lower: 101 Upper: 34%		570%	2	218%		-	-	
EXCE	EDANCE 🕑		Lower: 0.01 Upper: No exceedance		23.50	c).91		-	-	

promar International

Beast Cliff SAC

Site Information Beast Cliff - Whitby (Ro	bin Hood's Bay) (SAC) 🔽 🔍
Region:	England
Site Name:	Beast Cliff - Whitby (Robin Hood`s Bay)
Site Code: 🕐	UK0030086
Designation Status: 🕖	SAC
Distance from Installation (m): 💿	7681
Receptor Type:	Habitat
Grid Reference:	495216,504558.4
Met Site: (2)	CHUR
Run Mode: 🕐	Conservative
PM ₁₀ Percentile: 💿	Average
Installation Information 🕐	

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _S (t/a)	(kOu/a)	Conc NHs (µg/m3)	(kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	PM ₁₀	Conc Odour (Ou/m3)
1	High Farm	1	1	-	0.88	-	0.01	0.03	0.002	-	-
Total D	epositions/Concentrations and	Exceedances	(2)								

Concentrations/Depositions and Critical Loads/Levels	NH₃ (μg/m3)	N Dep. (kg N/ha/yr)	Acid Dep. (kEq H+/ha/yr)	РМ ₁₀ (µg/m3)	Odour (Ou/m3)
Process Contribution (PC) at receptor edge	0.01	0.05	0.004	-	-
Background concentration at receptor edge 💿	0.72	13.58	1.23 (N:0.97 S:0.26)	-	-
Predicted Environmental Concentration/Deposition (PEC) 💿	0.73	13.63	1.23	-	-
Environmental Assessment Level or Critical Load / Level 🕑	Lower: 1 Upper: 3 ③	Vegetated sea cliffs of the Atlantic and Baltic coasts	No sensitive habitat or species at this site	-	-
		ALTERNATIVE	CRITICAL LOAD INFO]	
USE OWN THRESHOLDS?					

	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a)	Conc NH _S (µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3	Conc Odour (Ou/m3)
1	High Farm	1	1	-	0.88	-	0.01	0.03	0.002	-	-
Total	Depositions/Concentrations a	nd Exceedance	es 🕐								
	entrations/Depositions and C s/Levels	ritical	NH3 (µg/m3)		N Dep. (kg N/ha/j		lcid Dep. kEq H+/ha	ı/yr)	PM ₁₀ (µg/m3)		dour Du/m3)
Proces	ss Contribution (PC) at recepto	redge	0.01	c	0.05	c	.004		-	-	
Backg	round concentration at recepto	r edge 💿	0.72	1	13.58	1	.23 (N:0.9	7 S:0.26)	-	-	
	cted Environmental entration/Deposition (PEC) ③		0.73	1	13.63	1	.23		-	-	
	nmental Assessment Level ical Load / Level ঔ		Lower: 1 Upper: 3	0	vegetated cliffs of the Atlantic ar Baltic coas	e s d	lo sensitiv pecies at t	e habitat or his site	-	-	
				[ALTERNA	TIVE C	RITICAL LO	DAD INFO			
USE	OWN THRESHOLDS?										
% of r	elevant standard PC 🖲		Lower: 1% Upper: 0%		n/a	r	i/a		-	-	
	elevant standard PC (3) elevant standard PEC (3)			6 % r	n/a n/a		/a /a		-	-	

Newtondale SSSI

Site Information Newtondale (SSSI)				♥ (2)							
Region:	Engl	land									
Site Name:	New	/tondale									
Site Code: (2)	317	2									
Designation Status: 💿	SSSI										
Distance from Installation (m): 💿	8374	4									
Receptor Type:	Hab	itat									
Grid Reference:	4840	665.8,4993	46.8								
Met Site: 🕐	CHU	IR									
Run Mode: 💿	Con	servative									
PM ₁₀ Percentile: 🕐	Ave	rage									
Installation Information 🕲											
No. Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odou (kOu/	a) N	Conc IH₃ µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3)
						-					
1 High Farm	1	1	-	0.88	-	0.	.01	0.04	0.003	-	-
1 High Farm Total Depositions/Concentrations and	1.	1.	-	0.88	-	0.	.01	0.04	0.003	-	-
	d Exceedance	1.	-	0.88 N Dep. (kg N/ha/)	- yr)	Acid	0.01 d Dep. q H+/ha/		0.003		- lour u/m3)
Total Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels	d Exceedance	NH3	-	N Dep.	- yr)	Acid	d Dep. q H+/ha/		PM10		
Total Depositions/Concentrations and Concentrations/Depositions and Cri	d Exceedance itical	s (?) NH ₃ (µg/m3)	-	N Dep. (kg N/ha/j	yr)	Acid (kEq	d Dep. q H+/ha/	'yr)	PM10		
Total Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels Process Contribution (PC) at receptor of Background concentration at receptor of	d Exceedance itical	s (2) NH ₃ (µg/m3) 0.01	-	<mark>N Dep. (kg N/ha/</mark>) 0.08		Acid (kEq 0.00 1.53	d Dep. q H+/ha / 05 3 (N:1.20	'yr)	PM10		
Total Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels Process Contribution (PC) at receptor of Background concentration at receptor of Predicted Environmental	d Exceedance itical	s (2) NH₃ (µg/m3) 0.01 0.72	-	N Dep. (kg N/ha/) 0.08 26.46		Acid (kEq	d Dep. q H+/ha / 05 3 (N:1.20	'yr)	PM10		
Total Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels Process Contribution (PC) at receptor of Background concentration at receptor of Predicted Environmental Concentration/Deposition (PEC) ③	d Exceedance itical	s (2) NH₃ (µg/m3) 0.01 0.72	-	N Dep. (kg N/ha/) 0.08 26.46		Acid (kEq 0.00 1.53 1.54	d Dep. q H+/ha / 05 3 (N:1.20	'yr)	PM10		
Total Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels Process Contribution (PC) at receptor of Background concentration at receptor of Predicted Environmental Concentration/Deposition (PEC) (2) Environmental Assessment Level	d Exceedance itical	NH ₃ (µg/m3) 0.01 0.72 0.73	-	N Dep. (kg N/ha/) 0.08 26.46 26.54		Acid (kEq 0.00 1.53 1.54 maxl	d Dep. q H+/ha/)5 3 (N:1.20	'yr)	PM10		
Total Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels Process Contribution (PC) at receptor (d Exceedance itical	NH3 (µg/m3) 0.01 0.72 0.73	-	N Dep. (kg N/ha/) 0.08 26.46 26.54 5.0 Broad-lea	ved,	Acid (kEq 0.00 1.53 1.54 max1 max2	d Dep. 9 H+/ha/ 05 3 (N:1.20 4 (N: 0.39 (S: 0.17	'yr)	PM10		
Total Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels Process Contribution (PC) at receptor of Background concentration at receptor of Predicted Environmental Concentration/Deposition (PEC) (2) Environmental Assessment Level	d Exceedance itical	NH ₃ (µg/m3) 0.01 0.72 0.73 Lower: 1 Upper: 3	-	N Dep. (kg N/ha/) 0.08 26.46 26.54 5.0 Broad-lear mixed and	ved, i yew	Acid (kEq 0.00 1.53 1.54 max1 max3 minN	d Dep. 9 H+/ha/ 35 3 (N:1.20 4 (N: 0.39 (S: 0.17 N: 0.22	יע) ו(S:0.33)	PM10		
Total Depositions/Concentrations and Concentrations/Depositions and Cri Loads/Levels Process Contribution (PC) at receptor of Background concentration at receptor of Predicted Environmental Concentration/Deposition (PEC) (2) Environmental Assessment Level	d Exceedance itical	NH ₃ (µg/m3) 0.01 0.72 0.73 Lower: 1 Upper: 3	-	N Dep. (kg N/ha/) 0.08 26.46 26.54 5.0 Broad-lea	ved, i yew	Acid (kEq 0.00 1.53 1.54 max1 max2 minN Fen	d Dep. 9 H+/ha/ 05 3 (N:1.20 4 (N: 0.39 (S: 0.17	yr) S:0.33)	PM10		

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH ₃ (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3)
1	High Farm	1	1	-	0.88	-	0.01	0.04	0.003	-	-
Total I	Depositions/Concentrations ar	nd Exceedanc	es 🕐								
	entrations/Depositions and C s/Levels	ritical	NH₃ (µg/m3)		l Dep. kg N/ha/j		Acid Dep. kEq H+/ha	a/yr)	РМ ₁₀ (µg/m3)		lour u/m3)
Backg Predic Conce Enviro	ss Contribution (PC) at receptor round concentration at receptor cted Environmental entration/Deposition (PEC) ③ mmental Assessment Level ical Load / Level ④	-	0.01 0.72 0.73 Lower: 1 Upper: 3	2 2 5 E	0.08 6.46 6.54 .0 road-lea nixed and roodland	ved, I yew	0.005 1.53 (N:1.2 1.54 maxN: 0.39 maxS: 0.17 minN: 0.22 Fen marsh swamp - low	and wland	-	-	
USE	OWN THRESHOLDS?										
% of re	elevant standard PC 🖲		Lower: 19 Upper: 09		%	:	3%		-	-	
% of re	elevant standard PEC 🖲		Lower: 73 Upper: 24		31%	:	395%		-	-	
EXCE	EDANCE (3)		Lower: No exceedan Upper: No exceedan	nce D	1.54		1.15		-	-	

Arnecliff and Park Hole Woods SAC

	d								
Arnecli	iff and Pa	ark Hol	e Woods						
UK0030	0142								
SAC									
8657									
Habitat	t								
479564	4.1,50490	02							
CHUR									
Conser	vative								
Average	e								
		PM ₁₀	NHs			Dep N	Dep Acid		Conc
		(t/a)	(ta)	(KOu/a) NH ₈ (μg/m3)	(kg/ha/yr)			(Ou/m3)
1		-	0.88	-	0.01	0.04	0.003	-	-
dances 🛛	7)								
	~								
N	H ₃ ıg/m3)		i Dep. kg N/ha/j		Acid Dep. (kEq H+/ha	i/yr)	РМ ₁₀ (µg/m3)		our ı/m3)
NI (P	H ₃	(/r)		/yr)			
NI (# 0.(H₃ ıg/m3)	0 0	kg N/ha/y	/17)	(kEq H +/ha				
NI (H 0.1	H3 1 g/m3) .01	0 2	kg N/ha/y	/1*)	(kEq H+/h a 0.005				
NI (H 0.1	H ₃ 1g/m3) .01 .84	0 2	kg N/ha/y).08 19.68	/1*)	(kEq H+ /ha 0.005 2.59 (N:2.1)				
0.1 0.2 0.3 0.4	H ₃ 1g/m3) .01 .84	0 2 2	kg N/ha/y).08 19.68	/ r)	(kEq H+/ha 0.005 2.59 (N:2.1) 2.6 maxN: 1.36	2 S:0.47)			
0.1 0.2 0.3 0.4	H ₃ 1g/m3) 01 84 85 0wer: 1 pper: 3	0 2 2 1	kg N/ha/) 0.08 29.68 29.76	rr)	(kEq H+/ka 0.005 2.59 (N:2.1) 2.6 maxN: 1.36 maxS: 1.15	2 S:0.47)			
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	H ₃ 1g/m3) 01 84 85 0wer: 1 pper: 3	0 2 2 1 0 2 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0	kg N/ha/y 0.08 19.68 19.76 0.0	e oak h llex	(kEq H+/ha 0.005 2.59 (N:2.1) 2.6 maxN: 1.36	2 S:0.47)	(µg/m3) - - -		
	8657 Habita 479564 CHUR Conser Averag	8657 Habitat 479564.1,5049(CHUR Conservative Average No. of new sources 1	8657 Habitat 479564.1,504902 CHUR Conservative Average No. of PM ₁₀ (t/a) sources 1 -	8657 Habitat 479564.1,504902 CHUR Conservative Average No. of PM10 Average NH2 (t/a) (t/a) (t/a) (t/a) 1 - 0.88	8657 Habitat 479564.1,504902 CHUR Conservative Average No. of PM ₁₀ NH ₈ Odour (t/a) (t/a) (kOu/a 1 - 0.88 -	8657 Habitat 479564.1,504902 CHUR Conservative Average ** No. of PM.10 new (t/a) NHs Odour Conc (kOu/a) NHs (µg/m3)	8657 Habitat 479564.1,504902 CHUR Conservative Average ** No. of PM10 NHs Odour Conc Dep N rew sources (t/a) (t/a) Odour (kOu/a) NHs (kg/ha/yr)	No. of new sources PMi10 (t/a) NHg (t/a) Odour (kOura) Conc NHg (µg/m3) Dep N (kg/ha/yr) Dep Acid (kEq H+/ha/yr) 1 - 0.88 - 0.01 0.04 0.003	8657 Habitat 479564.1,504902 CHUR Conservative Average

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NHs (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m	Conc Odour 3) (Ou/m3)
1	High Farm	1	1	-	0.88	-	0.01	0.04	0.003	-	-
Total	Depositions/Concentrations and	d Exceedance	es 🕐								
	entrations/Depositions and Cri s/Levels	tical	NH₃ (µg/m3)		N Dep. (kg N/ha/)	yr)	Acid Dep. (kEq H+/ha	a/yr)	РМ ₁₀ (µg/m3)		Odour (Ou/m3)
Backg Predi Conc Enviro	ess Contribution (PC) at receptor e ground concentration at receptor e cted Environmental entration/Deposition (PEC) (?) onmental Assessment Level tical Load / Level (?)	-	0.01 0.84 0.85 Lower: 1 Upper: 3		0.08 29.68 29.76 10.0 Old sessil woods wit and Blech in the Briti Isles	e oak h Ilex num sh	0.005 2.59 (N:2.1 2.6 maxN: 1.36 maxS: 1.15 minN: 0.21 Old sessile with Ilex an Blechnum i British Isles	oak woods d n the		-	
USE	OWN THRESHOLDS?								,		
% of r	relevant standard PC ③		Lower: 19 Upper: 09		1%		1%		-		-
% of r	relevant standard PEC 🕑		Lower: 85 Upper: 28		298%		191%		-		-
EXCE	EDANCE 🖲		Lower: No exceedan Upper: No exceedan	nce o	19.76		1.23		-		-

Arnecliff and Park Hole Woods SSSI

Arnecliff & Park Hole	Woods (SSS	I)		~ (2)						
	Engl	and								
	Arne	ecliff & Par	rk Hole	Woods						
	4088	В								
us: 🕑	SSSI									
stallation (m): 💿	8657	7								
	Hab	itat								
	4795	563.9,5049	01.8							
	CHU	R								
	Con	servative								
(?)	Aver	rage								
mation 🕲										
	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)		a) NHs	Dep N (kg/ha/yr)	(kEq	PM10	Conc Odour (Ou/m3)
n	1	1	-	0.88	-	0.01	0.04	0.003	-	-
Depositions and Cri	tical	NH₃ (µg/m3)					/yr)	PM ₁₀ (µg/m3)		our ı/m3)
tion (PC) at receptor e	dae	0.01		0.08		0.005		-	_	
	-			29.68		2.59 (N-2.1)	215-0.47)			
-	logo 🗢					-	10.0.117			
		0.05	-	29.70		2.0		-	-	
eposition (PEC)										
eposition (PEC) sessment Level		Lower: 1 Upper: 3	E	5.0 Broad-leav	/ed,	maxN: 1.36 maxS: 1.15 minN: 0.21		-	-	
sessment Level		Upper: 3	ł	Broad-leav mixed and woodland	ved, yew	maxS: 1.15	odland	-	-	
	tus: (?) istallation (m): (?) mation (?) m s/Concentrations and Depositions and Crit tion (PC) at receptor e entration at receptor e somental	Engl Arme 4084 (us: (*) SSSI (*) SSSI (England Arnecliff & Pai 4088 sstallation (m): (1) 8657 Habitat 479563.9,5049 CHUR Conservative Average mation (2) No. of sources No. of sources mation (2) S/Concentrations and Exceedances (2) Depositions and Critical NH3 (µg/m3) tion (PC) at receptor edge (2) 0.84 0.85	England Arnecliff & Park Hole 4088 SSSI Installation (m): Second Se	England Arnecliff & Park Hole Woods 4088 SSSI istallation (m): ? 8657 Habitat 479563.9,504901.8 CHUR Conservative Average mation ?* No. of sources PM.10 No. of sources PM.10 mation ?* No. of new sources m 1 1 s/Concentrations and Exceedances ?* NB.2 Depositions and Critical NH3 (µg/m3) N Dep.(kg N/ha/3) tion (PC) at receptor edge 0.01 0.08 entration at receptor edge ? 0.84 29.68 onmental 0.85 29.76	England Arnecliff & Park Hole Woods 4088 SSSI statistion (m): ? 8657 Habitat 479563.9,504901.8 CHUR Conservative Average mation ?* No. of sources PMso (t/a) No. of sources PMso (t/a) mation ?* No. of sources PMso (t/a) Mo. of sources PMso (t/a) Mo. of sources PMso (t/a) Mo. of sources NH ₃ Mathematical (t/a) Mo. of sources PMso (t/a) Mathematical NH ₃ Mathematical NH ₃ Mathematical NH ₃ (kg N/ha/yr) (kg N/ha/yr) tion (PC) at receptor edge 0.01 0.08 entration at receptor edge ? 0.84 29.68 onmental 0.85 29.76	England Arnecliff & Park Hole Woods 4088 4088 stus: (*) SSSI isstallation (m): (*) 8657 Habitat 479563.9,504901.8 CHUR Conservative Average Average mation (*) No. of sources NM. of new sources m 1 - 0.88 - 0.01 s/Concentrations and Exceedances (*) NH2 Keq H+/ha Keq H+/ha tion (PC) at receptor edge 0.01 0.08 0.005 entration at receptor edge 0.84 29.68 2.59 (N:2.12 pomental 0.85 29.76 2.6	England Arnecliff & Park Hole Woods 4088 5SSI sstallation (m): ? 8657 Habitat 479563.9,504901.8 CHUR Conservative Average mation ?* No. of sources PM.o (t'a) Cone No. of sources PM.o mation ?* No. of new sources mation ?* No. of sources Mo. of sources PM.o Mation ?* Aceid Dep. Monof the sources ?* NBa - Depositions and Critical NH3 (hg/m3) NBep. (hg N/ha/yr) Acid Dep. (hzg N/ha/yr) Child Dep. (hzg N/ha/yr) Ch	England Arnecliff & Park Hole Woods 4088 4088 SSSI SSSI isstallation (m): 8657 Habitat 479563.9,504901.8 CHUR Conservative Average Average mation (?) No. of sources PM10 NHg Odour Dep N Dep Acid (kEq History Mes Odour NHg Ug/m3) Dep Acid mation (?) No. of sources PM10 NHg Odour NHg Dep N Dep Acid mation (?) No. of sources PM10 NHg Odour NHg Dep A Mes Hithalyr) mation (?) No. of sources PM10 NHg Odour NHg Dep A Mes Mes mation (?) No. of sources PM10 N Dep. KEq H+/ha/yr) PM10 Mug/m3) mation (?) NH3 (µg/m3) N Dep. KEq H+/ha/yr) PM10 s/Concentrations and Exceedances (?) N Dep. KEq H+/ha/yr) (µg/m3) PM10 (µg/m3) PM10 PM10	England Arnecliff & Park Hole Woods 4088 4088 stallation (m): Image: SSSI stallation (m): Image: S

No.	Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3)
1	High Farm	1	1	-	0.88	-	0.01	0.04	0.003	-	-
Total I	Depositions/Concentrations and	d Exceedanc	es 😢								
	entrations/Depositions and Cri i/Levels	tical	NH₃ (µg/m3)		N Dep. (kg N/ha/)		Acid Dep. (kEq H+/ha	ı/yr)	РМ ₁₀ (µg/m3)		lour u/m3)
Proces	ss Contribution (PC) at receptor	edge	0.01	c	80.0		0.005		-	-	
Backg	round concentration at receptor	edge 🕑	0.84	1	29.68	1	2.59 (N:2.1)	2 S:0.47)	-	-	
	cted Environmental entration/Deposition (PEC) ③		0.85	1	29.76	1	2.6		-	-	
	nmental Assessment Level ical Load / Level 🛞		Lower: 1 Upper: 3	Ē	5.0 Broad-lea mixed and woodland	ved, iyew	maxN: 1.36 maxS: 1.15 minN: 0.21 Broad-leave and yew wo	ed, mixed oodland	-	-	
USE	OWN THRESHOLDS?				ALTERNA		RITICAL LO	JAD INFO			
% of re	elevant standard PC 🕑		Lower: 19 Upper: 09		2%		1%		-	-	
% of re	elevant standard PEC 🕲		Lower: 85 Upper: 28		595%		191%		-	-	
EXCE	EDANCE 🕑		Lower: No exceedan Upper: No exceedan	ice D	24.76		1.23		-	-	

Fen Bog SSSI

Site Information Fen Bog (S/	AC)				✓ ②						
Region:		Engl	and								
Site Name:		Fen	Bog								
Site Code: 🕑		UKO	030332								
Designation Status: 💿		SAC									
Distance from Installation (m	n): 🕑	9291	1								
Receptor Type:		Habi	itat								
Grid Reference:		4854	427.6,4981	08.4							
Met Site: 🕑		CHU	R								
Run Mode: 🕑		Cons	servative								
PM ₁₀ Percentile: (2)		Aver	rage								
Installation Information 🕐											
No. Name		No. of sources	No. of new sources	PM ₁₀ (t/a)	NH _s (t/a)	Odour (kOu/a)	Conc NH ₈ (µg/m3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	PM10	Conc Odour (Ou/m3)
1 High Farm		1	1	-	0.88	-	0	0.02	0.002	-	-
1 High Farm Total Depositions/Concentrat Concentrations/Depositions Loads/Levels	tions and l	Exceedance	1.	-	0.88 N Dep. (kg N/ha/)		0 cid Dep. kEq H+/ha		0.002		- lour u/m3)
Total Depositions/Concentrat Concentrations/Depositions Loads/Levels	tions and l	Exceedance:	s (?) NH3	-	N Dep.	/m) (I	cid Dep.		PM ₁₀		
Total Depositions/Concentrat Concentrations/Depositions Loads/Levels Process Contribution (PC) at re	tions and l	Exceedance: cal	S ③ NH ₃ (µg/m3)	-	N Dep. (kg N/ha/)	//) ((icid Dep. kEq H+/ha	ı/yr)	PM ₁₀		
Total Depositions/Concentrat Concentrations/Depositions Loads/Levels Process Contribution (PC) at re Background concentration at re	tions and l	Exceedance: cal	s (2) NH ₃ (µg/m3) 0.00 0.65	-	N Dep. (kg N/ha/) 0.00 16.66	/*) (1 0 1	cid Dep. kEq H+/ha .000 .53 (N:1.1)	ı/yr)	PM ₁₀		
Total Depositions/Concentrat Concentrations/Depositions Loads/Levels Process Contribution (PC) at re	and Critic eceptor ed eceptor ed	Exceedance: cal	s (2) NH ₃ (μg/m3)	-	N Dep. (kg N/ha/y 0.00	/*) (1 0 1	icid Dep. kEq H+/ha	ı/yr)	PM ₁₀		
Total Depositions/Concentrat Concentrations/Depositions Loads/Levels Process Contribution (PC) at re Background concentration at re Predicted Environmental	eceptor ed eceptor ed eceptor ed	Exceedance: cal	s (7) NH ₃ (µg/m3) 0.00 0.65 0.65 Lower: 1 Upper: 3	-	N Dep. (kg N/ha/y 0.00 16.66 16.66 10.0	///) (1 0 1 1 1 n n	cid Dep. kEq H+/ha .000 .53 (N:1.1)	9 S:0.34)	PM ₁₀		
Total Depositions/Concentrat Concentrations/Depositions Loads/Levels Process Contribution (PC) at re Background concentration at re Predicted Environmental Concentration/Deposition (P Environmental Assessment Le	eceptor ed eceptor ed eceptor ed	Exceedance: cal	s (7) NH ₃ (µg/m3) 0.00 0.65 0.65 Lower: 1	-	N Dep. (kg N/ha/) 0.00 16.66 16.66	yr) () 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9 S:0.34)	PM ₁₀		
Total Depositions/Concentrat Concentrations/Depositions Loads/Levels Process Contribution (PC) at re Background concentration at re Predicted Environmental Concentration/Deposition (P Environmental Assessment Le	eceptor ed eceptor ed eceptor ed	Exceedance: cal	s (7) NH ₃ (µg/m3) 0.00 0.65 0.65 Lower: 1 Upper: 3	-	N Dep. (kg N/ha/) 0.00 16.66 16.66 10.0 Transition mires and quaking be	vr) ((0 1 1 1 1 1 0 9 1 1 1 1 1 1 1 1 1 1 1 1	cid Dep. kEq H+/ha .000 .53 (N:1.19 .53 haxN: 0.60 haxS: 0.28 hinN: 0.32	nires and	PM ₁₀		

No. Name	No. of sources	No. of new sources	PM ₁₀ (t/a)	NHs (t/a)	Odour (kOu/a		Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Conc PM ₁₀ (µg/m3)	Conc Odour (Ou/m3)
1 High Farm	1	1	-	0.88	-	0	0.02	0.002	-	-
Total Depositions/Concentrations and	I Exceedance	s (?)								
Concentrations/Depositions and Cri Loads/Levels	tical	NH₃ (µg/m3)		N Dep. (kg N/ha/		Acid Dep. (kEq H+/ha	/yr)	PM ₁₀ (µg/m3)		dour Du/m3)
Process Contribution (PC) at receptor e	dge	0.00		0.00		0.000		-	-	
Background concentration at receptor e	edge 💿	0.65		16.66		1.53 (N:1.1	9 S:0.34)	-	-	
Predicted Environmental Concentration/Deposition (PEC) ③		0.65		16.66		1.53		-	-	
Environmental Assessment Level or Critical Load / Level ③		Lower: 1 Upper: 3 ③		10.0 Transitior mires and quaking b	n J pogs	maxN: 0.60 maxS: 0.28 minN: 0.32 Transition n quaking boy	nires and	-	-	
USE OWN THRESHOLDS?				ALTERN	ATIVE C	RITICAL LO	DAD INFO			
% of relevant standard PC ③		Lower: 09 Upper: 09		0%		0%		-	-	
% of relevant standard PEC 💿		Lower: 65 Upper: 22		167%		255%		-	-	
EXCEEDANCE 💿		Lower: No exceedan Upper: No exceedan	nce o	6.66		0.93		-	-	

